Evidence for #infection but not #transmission of #Zika virus by #Aedes albopictus (Diptera: Culicidae) from #Spain (Parasit Vectors., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Parasit Vectors. 2019 May 3;12(1):204. doi: 10.1186/s13071-019-3467-y.

Evidence for infection but not transmission of Zika virus by Aedes albopictus (Diptera: Culicidae) from Spain.

Hernández-Triana LM1, Barrero E2, Delacour-Estrella S3, Ruiz-Arrondo I4, Lucientes J3, Fernández de Marco MDM2, Thorne L2, Lumley S5, Johnson N2,6, Mansfield KL2, Fooks AR2,7.

Author information: 1 Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK. luis.hernandez-triana@apha.gov.uk. 2 Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK. 3 Department of Animal Pathology, Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain. 4 Center for Rickettsiosis and Vector-Borne Diseases Group, Hospital Universitario San Pedro-CIBIR, Logroño, Spain. 5 Public Health England, Porton Down, Salisbury, SP4 0JG, UK. 6 Faculty of Health and Medicine, University of Surrey, Guildford, Surrey, GU27XH, UK. 7 Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.

 

Abstract

BACKGROUND:

A number of mosquito-borne viruses such as dengue virus (DENV), Usutu virus (USUV), West Nile virus (WNV) are autochthonously transmitted in Europe and six invasive mosquito species have been detected in this temperate region. This has increased the risk for the emergence of further mosquito-borne diseases. However, there is a paucity of information on whether European populations of invasive mosquito species are competent to transmit arboviruses. In this study, the susceptibility of Aedes albopictus originating from Spain and a laboratory-adapted colony of Aedes aegypti, was assessed for infection with, and transmission of Zika virus (ZIKV). Vertical transmission in both species was also assessed.

METHODS:

Aedes albopictus colonised from eggs collected in Spain and an existing colony of Ae. aegypti were fed infectious blood meals containing ZIKV (Polynesian strain) at 1.6 × 107 PFU/ml. Blood-fed mosquitoes were separated and maintained at 20 °C or 25 °C. Legs, saliva and bodies were sampled from specimens at 7, 14 and 21 days post-infection (dpi) in order to determine infection, dissemination and transmission rates. All samples were analysed by real-time RT-PCR using primers targeting the ZIKV NS1 gene.

RESULTS:

At 14 dpi and 21 dpi, ZIKV RNA was detected in the bodies of both species at both temperatures. However, live virus only was detected in the saliva of Ae. aegypti at 25 °C with a transmission rate of 44%. No evidence for virus expectoration was obtained for Ae. albopictus under any condition. Notably, ZIKV RNA was not detectable in the saliva of Ae. aegypti at 20 °C after 21 days. No vertical transmission of ZIKV was detected in this study.

CONCLUSIONS:

Experimental infection of Ae. albopictus colonized from Spain with ZIKV did not result in expectoration of virus in saliva in contrast to results for Ae. aegypti. No evidence of vertical transmission of virus was observed in this study. This suggests that this strain of Ae. albopictus is not competent for ZIKV transmission under the conditions tested.

KEYWORDS: Aedes aegypti; Aedes albopictus; Spain; Vector competence; Zika virus

PMID: 31053164 DOI: 10.1186/s13071-019-3467-y

Keywords: Zika Virus; Mosquitoes; Aedes aegytpi; Aedes albopictus; Spain.

——

Advertisements

#Assessment of the #function and intergenus-compatibility of #Ebola and #Lloviu virus #proteins (J Gen Virol., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

J Gen Virol. 2019 Apr 24. doi: 10.1099/jgv.0.001261. [Epub ahead of print]

Assessment of the function and intergenus-compatibility of Ebola and Lloviu virus proteins.

Kämper L1, Zierke L1, Schmidt ML1, Müller A1, Wendt L1, Brandt J1, Hartmann E1, Braun S1, Holzerland J2, Groseth A2, Hoenen T1.

Author information: 1 Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany. 2 Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany.

 

Abstract

Sequences for Lloviu virus (LLOV), a putative novel filovirus, were first identified in Miniopterus schreibersii bats in Spain following a massive bat die-off in 2002, and also recently found in bats in Hungary. However, until now it is unclear if these sequences correspond to a fully functional, infectious virus, and whether it will show a pathogenic phenotype like African filoviruses, such as ebola- and marburgviruses, or be apathogenic for humans, like the Asian filovirus Reston virus. Since no infectious virus has been recovered, the only opportunity to study infectious LLOV is to use a reverse genetics-based full-length clone system to de novo generate LLOV. As a first step in this process, and to investigate whether the identified sequences indeed correspond to functional viral proteins, we have developed life cycle modelling systems for LLOV, which allow us to study genome replication and transcription as well as entry of this virus. We show that all LLOV proteins fulfill their canonical role in the virus life cycle as expected based on the well-studied related filovirus Ebola virus. Further, we have analysed the intergenus-compatibility of proteins that have to act in concert to facilitate the virus life cycle. We show that some but not all proteins from LLOV and Ebola virus are compatible with each other, emphasizing the close relationship of these viruses, and informing future studies of filovirus biology with respect to the generation of genus-chimeric proteins in order to probe virus protein-protein interactions on a functional level.

PMID: 31017565 DOI: 10.1099/jgv.0.001261

Keywords: Filovirus; Bats; Lloviu virus; Spain; Hungary; Ebola.

——

Detection of #colistin #resistance #mcr-1 gene in #Salmonella enterica serovar Rissen isolated from #mussels, #Spain, 2012­ to 2016 (Euro Surveill., abstract)

[Source: Eurosurveillance, full page: (LINK). Abstract, edited.]

Detection of colistin resistance mcr-1 gene in Salmonella enterica serovar Rissen isolated from mussels, Spain, 2012­ to 2016

Antonio Lozano-Leon1,2, Carlos Garcia-Omil1, Jacobo Dalama1, Rafael Rodriguez-Souto1, Jaime Martinez-Urtaza3, Narjol Gonzalez-Escalona4

Affiliations: 1 ASMECRUZ Laboratory. Playa de Beluso s/n 36939, Pontevedra, Spain; 2 CI8 Research Group. Department Chemistry and Food Analysis, University of Vigo, As Lagoas-Marcosende 36310 Vigo, Pontevedra, Spain; 3 Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset, United Kingdom; 4 Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States

Correspondence:  Antonio Lozano-Leon

Citation style for this article: Lozano-Leon Antonio, Garcia-Omil Carlos, Dalama Jacobo, Rodriguez-Souto Rafael, Martinez-Urtaza Jaime, Gonzalez-Escalona Narjol. Detection of colistin resistance mcr-1 gene in Salmonella enterica serovar Rissen isolated from mussels, Spain, 2012­ to 2016. Euro Surveill. 2019;24(16):pii=1900200. https://doi.org/10.2807/1560-7917.ES.2019.24.16.1900200

Received: 20 Mar 2019;   Accepted: 16 Apr 2019

 

Abstract

Nineteen Salmonella strains were isolated from 5,907 randomly selected mussel samples during a monitoring programme for the presence of Salmonella in shellfish in Galicia, north-west Spain (2012–16). Serovars, sequence type and antimicrobial resistance genes were determined through genome sequencing. Presence of the mcr-1 gene in one strain belonging to serovar Rissen and ST-469 was identified. The mcr-1 gene had not been isolated previously in environmental Salmonella isolated from mussels in Spain.

©  This work is licensed under a Creative Commons Attribution 4.0 International License.

Keywords: Antibiotics; Drugs Resistance; Colistin; MCR1; Salmonella enterica; Spain.

——

#Spanish nationwide #survey on #Pseudomonas aeruginosa #antimicrobial #resistance mechanisms and #epidemiology (J Antimicrob Chemother., abstract)

[Source: Journal of Antimicrobial Chemotherapy, full page: (LINK). Abstract, edited.]

Spanish nationwide survey on Pseudomonas aeruginosa antimicrobial resistance mechanisms and epidemiology

Ester del Barrio-Tofiño, Laura Zamorano, Sara Cortes-Lara, Carla López-Causapé, Irina Sánchez-Diener, Gabriel Cabot, Germán Bou, Luis Martínez-Martínez, Antonio Oliver

Journal of Antimicrobial Chemotherapy, dkz147, https://doi.org/10.1093/jac/dkz147

Published: 15 April 2019

 

Abstract

Objectives

To undertake a Spanish nationwide survey on Pseudomonas aeruginosamolecular epidemiology and antimicrobial resistance.

Methods

Up to 30 consecutive healthcare-associated P. aeruginosa isolates collected in 2017 from each of 51 hospitals were studied. MICs of 13 antipseudomonal agents were determined by broth microdilution. Horizontally acquired β-lactamases were detected by phenotypic methods and PCR. Clonal epidemiology was evaluated through PFGE and MLST; at least one XDR isolate from each clone and hospital (n = 185) was sequenced.

Results

The most active antipseudomonals against the 1445 isolates studied were colistin and ceftolozane/tazobactam (both 94.6% susceptible, MIC50/90 = 1/2 mg/L) followed by ceftazidime/avibactam (94.2% susceptible, MIC50/90 = 2/8 mg/L). Up to 252 (17.3%) of the isolates were XDR. Carbapenemases/ESBLs were detected in 3.1% of the isolates, including VIM, IMP, GES, PER and OXA enzymes. The most frequent clone among the XDR isolates was ST175 (40.9%), followed by CC235 (10.7%), ST308 (5.2%) and CC111 (4.0%). Carbapenemase production varied geographically and involved diverse clones, including 16.5% of ST175 XDR isolates. Additionally, 56% of the sequenced XDR isolates showed horizontally acquired aminoglycoside-modifying enzymes, which correlated with tobramycin resistance. Two XDR isolates produced QnrVC1, but fluoroquinolone resistance was mostly caused by QRDR mutations. Beyond frequent mutations (>60%) in OprD and AmpC regulators, four isolates showed AmpC mutations associated with resistance to ceftolozane/tazobactam and ceftazidime/avibactam.

Conclusions

ST175 is the most frequent XDR high-risk clone in Spanish hospitals, but this nationwide survey also indicates a complex scenario in which major differences in local epidemiology, including carbapenemase production, need to be acknowledged in order to guide antimicrobial therapy.

Topic: phenotype – polymerase chain reaction – pseudomonas aeruginosa – mutation – colistin – epidemiology – ceftazidime – clone cells – drug resistance, microbial – electrophoresis, gel, pulsed-field – epidemiology, molecular – fluoroquinolones – spain – enzymes – tobramycin – aminoglycosides – antimicrobials – tazobactam – extended-spectrum beta lactamases – malnutrition-inflammation-cachexia syndrome – ceftolozane – avibactam

Issue Section: ORIGINAL RESEARCH

© The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Keywords: Antibiotics; Drugs Resistance; Pseudomonas aeruginosa; Spain; Colistin; Ceftazidime; Fluoroquinolones; Tobramycin; Aminoglycosides; Tazobactam; Avibactam.

——-

Limited #risk of #Zika virus #transmission by five #Aedes albopictus #populations from #Spain (Parasit Vectors., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Parasit Vectors. 2019 Mar 29;12(1):150. doi: 10.1186/s13071-019-3359-1.

Limited risk of Zika virus transmission by five Aedes albopictus populations from Spain.

González MA1,2, Pavan MG2, Fernandes RS2, Busquets N3, David MR2, Lourenço-Oliveira R2,4, García-Pérez AL1, Maciel-de-Freitas R5,6.

Author information: 1 NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain. 2 Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/ FIOCRUZ), Rio de Janeiro, Brazil. 3 IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain. 4 Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. 5 Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/ FIOCRUZ), Rio de Janeiro, Brazil. freitas@ioc.fiocruz.br. 6 Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. freitas@ioc.fiocruz.br.

 

Abstract

BACKGROUND:

Aedes albopictus, the Asian tiger mosquito, is an exotic invasive species in Europe. It has substantial public health relevance due to its potential role in transmitting several human pathogens. Out of the European countries, Spain has one of the highest risk levels of autochthonous arbovirus transmission due to both the high density of Ae. albopictus and the extensive tourist influx from vector-endemic areas. This study aims to investigate the susceptibility of five Ae. albopictus populations from mainland Spain and the Balearic Islands to a Brazilian Zika virus (ZIKV) strain.

METHODS:

The F1 generation of each Ae. albopictus population was orally challenged with a ZIKV-infected blood meal (1.8 × 106 PFU/ml). At 7 and 14 days post-infection (dpi), mosquito bodies (thorax and abdomen) and heads were individually analysed through RT-qPCR to determine the infection rate (IR) and dissemination rate (DR), respectively. The saliva of infected mosquitoes was inoculated in Vero cells and the transmission rate was assessed by plaque assay or RT-qPCR on ~33 individuals per population.

RESULTS:

The IR and DR ranged between 12-88%, and 0-60%, respectively, suggesting that ZIKV is capable of crossing the midgut barrier. Remarkably, no infectious viral particle was found in saliva samples, indicating a low ability of ZIKV to overcome the salivary gland barrier. A subsequent assay revealed that a second non-infective blood meal 48 h after ZIKV exposure did not influence Ae. albopictus vector competence.

CONCLUSIONS:

The oral experimental ZIKV infections performed here indicate that Ae. albopictus from Spain become infected and disseminate the virus through the body but has a limited ability to transmit the Brazilian ZIKV strain through biting. Therefore, the results suggest a limited risk of autochthonous ZIKV transmission in Spain by Ae. albopictus.

KEYWORDS: Aedes albopictus; Plaque assay; RT-qPCR; Spanish populations; Vector competence; Viral copies; Zika virus

PMID: 30922370 DOI: 10.1186/s13071-019-3359-1

Keywords: Zika Virus; Aedes albopictus; Spain.

——

#Surveillance of transmitted #drug #resistance to #integrase inhibitors in #Spain: implications for clinical practice (J Antimicrob Chemother., abstract)

[Source: Journal of Antimicrobial Chemotherapy, full page: (LINK). Abstract, edited.]

Surveillance of transmitted drug resistance to integrase inhibitors in Spain: implications for clinical practice

Marta Alvarez Paz Casas, Adolfo de Salazar, Natalia Chueca, Carlos Guerrero-Beltran, Carmen Rodríguez Arkaitz, Imaz Nuria Espinosa, Silvia García-Bujalance, María Jesús Pérez-Elías, Mónica García-Alvarez, Jose Antonio Iribarren, Jesús Santos, David Dalmau, Antonio Aguilera, David Vinuesa, Félix Gutiérrez, Beatriz Piérola, José Miguel Molina, Joaquim Peraire, Irene Portilla, Juan Luis Gómez-Sirvent, Julián Olalla, Carlos Galera, José Ramón Blanco Melchor Riera, Lucio García-Fraile, Gemma Navarro, Adrían Curran, Eva Poveda, Federico García

Journal of Antimicrobial Chemotherapy, dkz067, https://doi.org/10.1093/jac/dkz067

Published: 05 March 2019

 

Abstract

Background

Integrase strand-transfer inhibitors (INSTIs) constitute at present one of the pillars of first-line ART.

Objectives

To study the prevalence of and the trend in transmitted drug resistance (TDR) to INSTIs in ART-naive patients in Spain.

Methods

During the period 2012–17, 1109 patients from CoRIS were analysed. The Stanford algorithm v8.7 was used to evaluate TDR and transmission of clinically relevant resistance. To describe individual mutations/polymorphisms, the most recent IAS list (for INSTIs) and the 2009 WHO list update (for the backbone NRTIs used in combination with INSTIs in first-line treatment) were used.

Results

Clinically relevant resistance to the INSTI class was 0.2%: T66I, 0.1%, resistance to elvitegravir and intermediate resistance to raltegravir; and G163K, 0.1%, intermediate resistance to raltegravir and elvitegravir. No clinical resistance to dolutegravir or bictegravir was observed. The prevalence of INSTI TDR following the IAS-USA INSTI mutation list was 2.6%, with no trend towards changes in the prevalence throughout the study period. The overall prevalence of NRTI WHO mutations was 4.3%, whereas clinically relevant resistance to tenofovir, abacavir and emtricitabine/lamivudine was 1.7%, 1.9% and 0.7%, respectively.

Conclusions

Given the low prevalence of clinically relevant resistance to INSTIs and first-line NRTIs in Spain, it is very unlikely that a newly diagnosed patient will present with clinical resistance to a first-line INSTI-based regimen. These patients may not benefit from INSTI and NRTI baseline resistance testing.

Topic: abacavir – mutation – polymorphism – drug resistance – integrase – integrase  inhibitors – lamivudine – spain – world health organization – tenofovir – emtricitabine – nucleoside reverse transcriptase inhibitors – surveillance, medical – elvitegravir – raltegravir – dolutegravir – bictegravir

Issue Section: ORIGINAL RESEARCH

© The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Keywords: HIV/AIDS; Antivirals; Drugs Resistance; Spain.

——

#Zika virus disease in #Spain. #Surveillance results and #epidemiology on reported cases, 2015-2017 (Med Clin (Barc.), abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Med Clin (Barc). 2019 Feb 20. pii: S0025-7753(19)30026-0. doi: 10.1016/j.medcli.2018.12.014. [Epub ahead of print]

Zika virus disease in Spain. Surveillance results and epidemiology on reported cases, 2015-2017.

[Article in English, Spanish]

Fernández Martínez B1, Martínez Sánchez EV2, Díaz García O3, Gómez Barroso D2, Sierra Moros MJ4, Cano Portero R2; en representación de la Red Nacional de Vigilancia Epidemiológica (RENAVE); Componentes del grupo RENAVE por orden alfabético de CC.AA.

Collaborators (33): Pérez Ruiz M5, Durán Plá E6, Cebollada Gracia AD7, Vergara Ugarriza A7, Huerta González I8, Grau Sancho P9, Cataliba Bosch I9, Rojo Moreno ML10, Pla Francés A10, Blasco de la Fuente A11, Javier Viloria Raymundo L11, Ruiz Sopeña C12, Fernández Arribas S12, Peces Jimenez P13, Torner Gràcia N14, Jané Checa M14, Suárez Rodríguez B15, Rivas Pérez AI16, Ramos Aceitero JM17, Pousa Ortega Á18, Purriños Hermida MJ18, Nieto Juliá A19, Latasa Zamalloa P19, Castrillejo Pérez D20, Garcia Ortúzar V21, Casado I22, Castilla J22, González-Carril F23, Artegoitia Axpe JM23, Martínez Ochoa E24, Ibáñez Pérez AC24, Huertas Zarco I25, Villatoro Bongiorno K25.

Author information: 1 Área de Análisis en Vigilancia Epidemiológica, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, España; Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Madrid, España. Electronic address: beafmar@gmail.com. 2 Área de Análisis en Vigilancia Epidemiológica, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, España; Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Madrid, España. 3 Área de Análisis en Vigilancia Epidemiológica, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, España. 4 Centro de Coordinación de Alertas y Emergencias Sanitarias, Ministerio de Sanidad, Consumo y Bienestar Social, Madrid, España. 5 Servicio de Microbiología, Hospital Universitario Virgen de las Nieves, Andalucía. 6 Servicio de Vigilancia y Salud Laboral, Consejería de Salud, Andalucía. 7 Dirección General de Salud Pública, Aragón. 8 Servicio de Vigilancia Epidemiológica, Dirección General de Salud Pública, Asturias. 9 Servicio de Epidemiología, Dirección General de Salud Pública y Participación, Baleares. 10 Dirección General de Salud Pública, Canarias. 11 Sección de Vigilancia Epidemiológica, Consejería de Sanidad, Cantabria. 12 Servicio de Epidemiología, Dirección General de Salud Pública, Consejería de Sanidad, Castilla y León. 13 Servicio de Información Sanitaria y Vigilancia Epidemiológica, Dirección General de Salud Pública, Castilla-La Mancha. 14 Servei de Control Epidemiològic, SG de Vigilància i Resposta a Emergències de Salut Pública, Cataluña. 15 Centro de Coordinación de Alertas y Emergencias Sanitarias, Cataluña. 16 Servicio de Vigilancia Epidemiológica, Consejería de Sanidad, Ceuta. 17 Subdirección de Epidemiología, Dirección General de Salud Pública, Extremadura. 18 Servizo de Epidemioloxía. Dirección xeral de Saúde Pública, Galicia. 19 Servicio de Epidemiología, Dirección General de Salud Pública, Madrid. 20 Servicio de Epidemiología, Consejería de Salud Pública, Melilla. 21 Vigilancia Epidemiológica, Dirección General de Salud Pública, Murcia. 22 Instituto de Salud Pública de Navarra, CIBERESP, Navarra. 23 Servicio de Vigilancia Epidemiológica y Vacunas, Dirección de Salud Pública y Adicciones, País Vasco. 24 Servicio de Epidemiología y Prevención Sanitaria, Dirección General de Salud Pública y Consumo, La Rioja. 25 Subdirección General de Epidemiologia y Vigilancia de la Salud, Conselleria de Sanitat, Comunidad Valenciana.

 

Abstract

INTRODUCTION AND OBJECTIVE:

Zika virus disease is a challenge for public health due to its rapid spread and potential foetal complications. Although it is imported in Spain, there is a risk of autochthonous transmission due to Aedes albopictus presence. Zika disease and congenital cases have been under surveillance since 2016. The objective of this study is to explore the epidemiology of disease and pregnancies result.

MATERIAL AND METHODS:

A descriptive study was carried out into cases reported to the National Surveillance Network (RENAVE) during the 30/11/2015 to 31/12/2017 period. The case definition and the survey are included in the RENAVE protocol. The variables were: date; notifying region (Autonomous Community (AC)); pregnancy and its evolution; case classification; mode of transmission; country or region of infection; socio-demographical, clinical and microbiological data. A descriptive analysis of the cases and their distribution according to the other variables was carried out.

RESULTS:

A total of 512 cases were reported by 17 ACs. 507 were non-congenital, of which 327 (64.5%) were women (52.5% of childbearing age). 403 cases (79.5%) corresponded to 2016 and 193 (38.1%) resided in regions with A. albopictus presence between May and October. 96.1% of imported cases were infected in America (51.7% while visiting relatives). Three cases (3.9%) of congenital Zika virus infection were detected among 77 pregnant women.

CONCLUSIONS:

The evolution of reported cases was in accordance with that of the epidemic in America. The largest group of travellers was young women who travelled to Latin America on family visits. Pregnancy monitoring resulted in the identification of Zika related foetal complications.

Copyright © 2019 Elsevier España, S.L.U. All rights reserved.

KEYWORDS: España; Spain; Surveillance; Vigilancia; Virus Zika; Zika virus

PMID: 30797578 DOI: 10.1016/j.medcli.2018.12.014

Keywords: Zika Virus; Spain.

—–