Potentiation of #betalactam #antibiotics and β-lactam/β-lactamase inhibitor combinations against #MDR and #XDR #Pseudomonas aeruginosa using non-ribosomal #tobramycin–cyclam conjugates (J Antimicrob Chemother., abstract)

[Source: Journal of Antimicrobial Chemotherapy, full page: (LINK). Abstract, edited.]

Potentiation of β-lactam antibiotics and β-lactam/β-lactamase inhibitor combinations against MDR and XDR Pseudomonas aeruginosa using non-ribosomal tobramycin–cyclam conjugates

Temilolu Idowu, Derek Ammeter, Gilbert Arthur, George G Zhanel, Frank Schweizer

Journal of Antimicrobial Chemotherapy, dkz228, https://doi.org/10.1093/jac/dkz228

Published: 28 May 2019

 

Abstract

Objectives

To develop a multifunctional adjuvant molecule that can rescue β-lactam antibiotics and β-lactam/β-lactamase inhibitor combinations from resistance in carbapenem-resistant Pseudomonas aeruginosa clinical isolates.

Methods

Preparation of adjuvant was guided by structure–activity relationships, following standard protocols. Susceptibility and chequerboard studies were assessed using serial 2-fold dilution assays. Toxicity was evaluated against porcine erythrocytes, human embryonic kidney (HEK293) cells and liver carcinoma (HepG2) cells via MTS assay. Preliminary in vivo efficacy was evaluated using a Galleria mellonella infection model.

Results

Conjugation of tobramycin and cyclam abrogates the ribosomal effects of tobramycin but confers a potent adjuvant property that restores full antibiotic activity of meropenem and aztreonam against carbapenem-resistant P. aeruginosa. Therapeutic levels of susceptibility, as determined by CLSI susceptibility breakpoints, were attained in several MDR clinical isolates, and time–kill assays revealed a synergistic dose-dependent pharmacodynamic relationship. A triple combination of the adjuvant with ceftazidime/avibactam (approved), aztreonam/avibactam (Phase III) and meropenem/avibactam enhances the efficacies of β-lactam/β-lactamase inhibitors against recalcitrant strains, suggesting rapid access of the combination to their periplasmic targets. The newly developed adjuvants, and their combinations, were non-haemolytic and non-cytotoxic, and preliminary in vivo evaluation in G. mellonella suggests therapeutic potential for the double and triple combinations.

Conclusions

Non-ribosomal tobramycin–cyclam conjugate mitigates the effect of OprD/OprF porin loss in P. aeruginosa and potentiates β-lactam/β-lactamase inhibitors against carbapenem-resistant clinical isolates, highlighting the complexity of resistance to β-lactam antibiotics. Our strategy presents an avenue to further preserve the therapeutic utility of β-lactam antibiotics.

Topic: antibiotics – pseudomonas aeruginosa – immunologic adjuvants – pharmaceutical adjuvants – aztreonam – ceftazidime – lactams – ribosomes – infection – tobramycin – meropenem – toxic effect – potentiation – avibactam – carbapenem resistance

Issue Section: ORIGINAL RESEARCH

© The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Keywords: Antibiotics; Drugs Resistance; Carbapenem; Beta-lactams; Pseudomonas aeruginosa; Tobramycin; Aztreonam; Avibactam; Ceftazidime.

——

Advertisements

#Ceftazidime – #Avibactam in Combination With #Fosfomycin: A Novel #Therapeutic Strategy Against #MDR #Pseudomonas aeruginosa (J Infect Dis., abstract)

[Source: Journal of Infectious Diseases, full page: (LINK). Abstract, edited.]

Ceftazidime-Avibactam in Combination With Fosfomycin: A Novel Therapeutic Strategy Against Multidrug-Resistant Pseudomonas aeruginosa

Krisztina M Papp-Wallace, Elise T Zeiser, Scott A Becka, Steven Park, Brigid M Wilson, Marisa L Winkler, Roshan D’Souza, Indresh Singh, Granger Sutton, Derrick E Fouts, Liang Chen, Barry N Kreiswirth, Evelyn J Ellis-Grosse, George L Drusano, David S Perlin, Robert A Bonomo

The Journal of Infectious Diseases, jiz149, https://doi.org/10.1093/infdis/jiz149

Published: 17 May 2019

 

Abstract

Previously, by targeting penicillin-binding protein 3, Pseudomonas-derived cephalosporinase (PDC), and MurA with ceftazidime-avibactam-fosfomycin, antimicrobial susceptibility was restored among multidrug-resistant (MDR) Pseudomonas aeruginosa. Herein, ceftazidime-avibactam-fosfomycin combination therapy against MDR P. aeruginosa clinical isolate CL232 was further evaluated. Checkerboard susceptibility analysis revealed synergy between ceftazidime-avibactam and fosfomycin. Accordingly, the resistance elements present and expressed in P. aeruginosa were analyzed using whole-genome sequencing and transcriptome profiling. Mutations in genes that are known to contribute to β-lactam resistance were identified. Moreover, expression of blaPDC, the mexAB-oprM efflux pump, and murA were upregulated. When fosfomycin was administered alone, the frequency of mutations conferring resistance was high; however, coadministration of fosfomycin with ceftazidime-avibactam yielded a lower frequency of resistance mutations. In a murine infection model using a high bacterial burden, ceftazidime-avibactam-fosfomycin significantly reduced the P. aeruginosa colony-forming units (CFUs), by approximately 2 and 5 logs, compared with stasis and in the vehicle-treated control, respectively. Administration of ceftazidime-avibactam and fosfomycin separately significantly increased CFUs, by approximately 3 logs and 1 log, respectively, compared with the number at stasis, and only reduced CFUs by approximately 1 log and 2 logs, respectively, compared with the number in the vehicle-treated control. Thus, the combination of ceftazidime-avibactam-fosfomycin was superior to either drug alone. By employing a “mechanism-based approach” to combination chemotherapy, we show that ceftazidime-avibactam-fosfomycin has the potential to offer infected patients with high bacterial burdens a therapeutic hope against infection with MDR P. aeruginosa that lack metallo-β-lactamases.

Pseudomonas aeruginosa, β-lactams, fosfomycin, combination therapy

Topic:  pseudomonas aeruginosa – ceftazidime – fosfomycin – lactams – infection – mice – avibactam – avibactam/ceftazidime

Issue Section: Major Article

Keywords: Antibiotics; Drugs Resistance; Pseudomonas aeruginosa; Avibactam; Ceftazidime; Fosfomycin.

——

Activity of # imipenem / #relebactam against #MDR #Pseudomonas aeruginosa in #Europe: SMART 2015–17 (J Antimicrob Chemother., abstract)

[Source: Journal of Antimicrobial Chemotherapy, full page: (LINK). Abstract, edited.]

Activity of imipenem/relebactam against MDR Pseudomonas aeruginosa in Europe: SMART 2015–17

Sibylle H Lob, James A Karlowsky, Katherine Young, Mary R Motyl, Stephen Hawser, Nimmi D Kothari, Melinda E Gueny, Daniel F Sahm

Journal of Antimicrobial Chemotherapy, dkz191, https://doi.org/10.1093/jac/dkz191

Published: 13 May 2019

 

Abstract

Objectives

Relebactam is a diazabicyclooctane non-β-lactam inhibitor of Ambler class A and C β-lactamases that is in clinical development in combination with imipenem/cilastatin. The current study evaluated the in vitro activity of imipenem/relebactam against 5447 isolates of Pseudomonas aeruginosasubmitted to the SMART global surveillance programme in 2015–17 by 67 clinical laboratories in 22 European countries.

Methods

MICs were determined using the CLSI broth microdilution reference method (Eleventh Edition: M07, 2018). Relebactam was tested at a fixed concentration of 4 mg/L in combination with doubling dilutions of imipenem. MICs were interpreted using EUCAST clinical breakpoints (version 8.1); imipenem breakpoints were applied to imipenem/relebactam.

Results

Rates of susceptibility to imipenem and imipenem/relebactam (MIC ≤4 mg/L) were 69.4% and 92.4%, respectively, for all isolates of P. aeruginosa. Over one-third of all isolates (34.9%, 1902/5447) were MDR; lower respiratory tract isolates (38.3%, 1327/3461) were more frequently MDR than were intraabdominal (28.5%, 355/1245) or urinary tract (29.7%, 212/714) isolates. Of all MDR isolates, 78.2% were susceptible to imipenem/relebactam, a rate that was 50–77 percentage points higher than the rate of susceptibility to imipenem or any other β-lactam tested; rates of susceptibility to imipenem/relebactam were similar for MDR isolates from lower respiratory tract (77.8% susceptible), intraabdominal (80.3%) and urinary tract (76.4%) infections. Overall, relebactam restored imipenem susceptibility to 75.2% (1254/1668) of imipenem-non-susceptible isolates of P. aeruginosa and to 69.6% (947/1361) of imipenem-non-susceptible isolates with an MDR phenotype.

Conclusions

Relebactam restored in vitro susceptibility to imipenem for most imipenem-non-susceptible and MDR clinical isolates of P. aeruginosa from European patients.

Topic: phenotype – pseudomonas aeruginosa – imipenem – lactams – respiratory system – urinary tract – infection

Issue Section: ORIGINAL RESEARCH

Keywords: Antibiotics; Drugs Resistance; Pseudomonas aeruginosa; Relebactam; Imipenem; European Region.

——

Challenge of drug #resistance in #Pseudomonas aeruginosa: clonal spread of #NDM1-positive ST-308 within a tertiary #hospital (J Antimicrob Chemother., abstract)

[Source: Journal of Antimicrobial Chemotherapy, full page: (LINK). Abstract, edited.]

Challenge of drug resistance in Pseudomonas aeruginosa: clonal spread of NDM-1-positive ST-308 within a tertiary hospital

Ka Lip Chew, Sophie Octavia, Oon Tek Ng, Kalisvar Marimuthu, Indumathi Venkatachalam, Bernadette Cheng, Raymond T P Lin, Jeanette W P Teo

Journal of Antimicrobial Chemotherapy, dkz169, https://doi.org/10.1093/jac/dkz169

Published: 12 May 2019

 

Abstract

Objectives

MDR Pseudomonas aeruginosa is a serious global threat to healthcare institutions. The mechanism by which drug resistance can be acquired is variable, but acquired carbapenemase production has been reported in P. aeruginosa. An investigation was performed to determine the rate and genomic epidemiology of New Delhi MBL (NDM) in β-lactam-non-susceptible isolates.

Methods

P. aeruginosa isolates from a tertiary hospital in Singapore between January 2015 and February 2018 were investigated for the presence of NDM genes.

Results

Out of 298 pan-β-lactam-non-susceptible isolates, 31 were found to be NDM positive (10.4%). WGS demonstrated that all 31 NDM-positive isolates were clonal, belonging to ST-308. blaNDM was chromosomally inserted within an integrative and conjugative element (ICE), ICETn43716385. The NDM-P. aeruginosa isolates possessed an extensive repertoire of both cell-associated [flagella, pili, alginate/biofilm, LPS, type III secretion system (T3SS) and type VI secretion system (T6SS)] and secreted virulence factors. Antibiograms revealed higher rates of drug resistance in NDM-positive isolates compared with their non-NDM counterparts. The NDM isolates remained 100% susceptible only to colistin.

Conclusions

The combination of chromosomal mutations, acquired resistance genes and virulence factors likely facilitated the persistent and ongoing spread of the ST-308 clade of P. aeruginosa within the hospital. Our study illustrates the particular threat of NDM-positive P. aeruginosa in a tertiary hospital setting in the era of antimicrobial resistance.

Topic: pseudomonas aeruginosa – mutation – colistin – epidemiology – drug resistance – alginates – biofilms – bodily secretions – chromosomes – drug resistance, microbial – bacterial fimbria – flagella – genes – genome – lactams – singapore – persistence – virulence factors – antibiogram – resistance genes – type iii protein secretion system complex – whole genome sequencing

Issue Section: ORIGINAL RESEARCH

© The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Keywords: Antibiotics; Drugs Resistance; Beta-lactams; NDM1; Pseudomonas aeruginosa; Nosocomial outbreaks.

——

#Plasmid carrying #blaCTX-M-2 and blaGES-1 in #XDR #Pseudomonas aeruginosa from #CSF (Antimicrob Agents Chemother., abstract)

[Source: Antimicrobial Agents and Chemotherapy, full page: (LINK). Abstract, edited.]

Plasmid carrying blaCTX-M-2 and blaGES-1 in extensively drug-resistant Pseudomonas aeruginosa from cerebrospinal fluid

Anelise Stella Ballaben, Renata Galetti, Leonardo Neves Andrade, Joseane Cristina Ferreira, Doroti de Oliveira Garcia, Paulo da Silva, Yohei Doi, Ana Lucia Costa Darini

DOI: 10.1128/AAC.00186-19

 

ABSTRACT

Extended-spectrum β-lactamases (ESBL) are spread worldwide in Order Enterobacterales (1, 2) but are less common in Pseudomonas aeruginosa, consequently little is known regarding genetic environment and plasmid carrying blaESBL genes in this species (3).…

___

Copyright © 2019 American Society for Microbiology. All Rights Reserved.

Keywords: Antibiotics; Drugs Resistance; Beta-lactams; Pseudomonas aeruginosa; Plasmids.

——

Potentiation of #imipenem by #relebactam for #Pseudomonas aeruginosa from #bacteraemia and respiratory infections (J Antimicrob Chemother., abstract)

[Source: Journal of Antimicrobial Chemotherapy, full page: (LINK). Abstract, edited.]

Potentiation of imipenem by relebactam for Pseudomonas aeruginosa from bacteraemia and respiratory infections

Carolyne Horner, Shazad Mushtaq, David M Livermore, BSAC Resistance Surveillance Standing Committee

Journal of Antimicrobial Chemotherapy, dkz133, https://doi.org/10.1093/jac/dkz133

Published: 29 April 2019

 

Abstract

Background

Imipenem resistance in Pseudomonas aeruginosa most often entails loss of the ‘carbapenem-specific’ porin OprD; more rarely it reflects acquired carbapenemases. Loss of OprD only confers resistance to imipenem if AmpC β-lactamase is expressed, and we investigated whether this mechanism was overcome by relebactam, a developmental diazabicyclooctane β-lactamase inhibitor.

Methods

Consecutive P. aeruginosa isolates causing bacteraemia or hospital-onset lower respiratory tract infections were collected between 2014 and 2016 under the aegis of the BSAC Resistance Surveillance Programme. Imipenem MICs were determined centrally by BSAC agar dilution, with relebactam at a fixed concentration (4 mg/L).

Results

For most imipenem-susceptible P. aeruginosa (726/759, 95.7%), the MICs of imipenem alone were 0.5–2 mg/L and were decreased 3- to 4-fold by addition of relebactam, as based on geometric means or modes. For most imipenem-resistant P. aeruginosa (82/92, 89%), imipenem MICs were 8–16 mg/L, and were reduced to 1–2 mg/L by relebactam. These patterns applied regardless of whether the isolates were susceptible to penicillins and cephalosporins or had phenotypes suggesting derepressed AmpC or up-regulated efflux. Imipenem MICs for five P. aeruginosa with MBLs remained high (≥16 mg/L) regardless of relebactam.

Conclusions

Potentiation of imipenem by relebactam was almost universal, in accordance with the view that endogenous pseudomonal AmpC ordinarily protects against this carbapenem to a small degree. Imipenem MICs were reduced to the current breakpoint, or lower, except for MBL producers. Potentiation was not compromised by derepression of AmpC or up-regulation of efflux.

Issue Section: ORIGINAL RESEARCH

Keywords: Antibiotics; Drugs Resistance; Pseudomonas aeruginosa; Imipenem; Relebactam.

—–

#ESBLs and #resistance to #ceftazidime / #avibactam and #ceftolozane / #tazobactam combinations in #Escherichia coli and #Pseudomonas aeruginosa (J Antimicrob Chemother., abstract)

[Source: Journal of Antimicrobial Chemotherapy, full page: (LINK). Abstract, edited.]

ESBLs and resistance to ceftazidime/avibactam and ceftolozane/tazobactam combinations in Escherichia coli and Pseudomonas aeruginosa

José-Manuel Ortiz de la Rosa, Patrice Nordmann, Laurent Poirel

Journal of Antimicrobial Chemotherapy, dkz149, https://doi.org/10.1093/jac/dkz149

Published: 23 April 2019

 

Abstract

Objectives

To evaluate the efficacy of the recently launched β-lactam/β-lactamase inhibitor combinations ceftazidime/avibactam and ceftolozane/tazobactam against ESBL-producing Escherichia coli and Pseudomonas aeruginosa strains.

Methods

A series of ESBL-encoding genes (blaTEM, blaSHV, blaCTX-M, blaVEB, blaPER, blaGES and blaBEL) was cloned and expressed in E. coli or P. aeruginosa recipient strains. Cultures of E. coli TOP10 harbouring recombinant plasmids and therefore producing the different ESBLs tested were grown in order to perform measurements of catalytic activities, using benzylpenicillin, ceftazidime and ceftolozane as substrates. IC50s were additionally determined for clavulanic acid, tazobactam and avibactam.

Results

We showed here an overall better activity of ceftazidime/avibactam compared with ceftolozane/tazobactam toward ESBL-producing E. coli and P. aeruginosa. Several ESBLs of the GES, PER and BEL types conferred resistance to ceftolozane/tazobactam in E. coli and P. aeruginosa. For GES-6 and PER-1 producers, resistance to ceftolozane/tazobactam could be explained by a high hydrolysis of ceftolozane and a low activity of tazobactam as an inhibitor. On the other hand, PER-producing P. aeruginosa also exhibited resistance to ceftazidime/avibactam.

Conclusions

Altogether, the results show that the ESBL PER-1, which is widespread worldwide, may be a source of resistance to both ceftolozane/tazobactam and ceftazidime/avibactam. Excellent activity of ceftazidime/avibactam was highlighted for both ESBL-producing E. coli and ESBL-producing P. aeruginosa.

Issue Section: ORIGINAL RESEARCH

© The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Keywords: Antibiotics; Drugs Resistance; E. Coli; Pseudomonas aeruginosa; Ceftazidime; Avibactam; Ceftolozane; Tazobactam.

——