#Entomological Data and #Detection of #WNV in #Mosquitoes in #Greece (2014–2016), Before Disease Re-Emergence in 2017 (Vector Borne Zoo Dis., abstract)

[Source: Vector Borne and Zoonotic Diseases, full page: (LINK). Abstract, edited.]

Entomological Data and Detection of West Nile Virus in Mosquitoes in Greece (2014–2016), Before Disease Re-Emergence in 2017

Eleni Patsoula, Stavroula Beleri, Nikolaos Tegos, Rima Mkrtsian, Annita Vakali, and Danai Pervanidou

Published Online: 11 Nov 2019 / DOI: https://doi.org/10.1089/vbz.2018.2422



West Nile virus (WNV) cases were seasonally recorded in humans and animals in Greece, from 2010 to 2014, and circulation of the virus was detected in different Regional Units of the country. Small scale entomological surveillance activities were carried out by several regions and regional units in Greece, during 2014–2016, with the participation of subcontractors for the vector control programs aiming to record presence/absence of mosquito species, and monitor and control mosquito populations. Mosquito traps were placed in rural and urban sites; specimens were collected, morphologically characterized, and pooled by date of collection, location, and species types. Mosquito pools containing Culex pipiens, Aedes caspius, and Aedes albopictus were examined for the presence of WNV and positive pools were detected in different areas of the country. Sequencing of a selected number of amplicons revealed WNV lineage 2 partial NS5 gene sequences. In this study, we present data on the mosquito species composition in the areas of study and WNV detection from several parts of Greece, in 6, 11, and 26 mosquito pools corresponding to the years 2014, 2015, and 2016, respectively. A total of 15 WNV human infections were reported to the public health authorities of the country in 2014, whereas no human cases were detected for 2015–2016. Taking into consideration the complex epidemiological profile of WNV and unforeseen changes in its circulation, re-emergence of WNV human cases in Greece was possible and expected, thus rendering surveillance activities imperative.

Keywords: West Nile Virus; Mosquitoes; Aedes spp.; Culex spp.; Greece.


#Host #nutritional status affects #alphavirus #virulence, #transmission, and #evolution (PLOS Pathog., abstract)

[Source: PLoS Pathogens, full page: (LINK). Abstract, edited.]


Host nutritional status affects alphavirus virulence, transmission, and evolution

James Weger-Lucarelli , Lucia Carrau, Laura I. Levi, Veronica Rezelj, Thomas Vallet, Hervé Blanc, Jérémy Boussier, Daniela Megrian, Sheryl Coutermarsh-Ott, Tanya LeRoith, Marco Vignuzzi


Published: November 11, 2019 / DOI: https://doi.org/10.1371/journal.ppat.1008089 / This is an uncorrected proof.



Malnourishment, specifically overweight/obesity and undernourishment, affects more than 2.5 billion people worldwide, with the number affected ever-increasing. Concurrently, emerging viral diseases, particularly those that are mosquito-borne, have spread dramatically in the past several decades, culminating in outbreaks of several viruses worldwide. Both forms of malnourishment are known to lead to an aberrant immune response, which can worsen disease outcomes and reduce vaccination efficacy for viral pathogens such as influenza and measles. Given the increasing rates of malnutrition and spread of arthropod-borne viruses (arboviruses), there is an urgent need to understand the role of host nutrition on the infection, virulence, and transmission of these viruses. To address this gap in knowledge, we infected lean, obese, and undernourished mice with arthritogenic arboviruses from the genus Alphavirus and assessed morbidity, virus replication, transmission, and evolution. Obesity and undernourishment did not consistently influence virus replication in the blood of infected animals except for reductions in virus in obese mice late in infection. However, morbidity was increased in obese mice under all conditions. Using Mayaro virus (MAYV) as a model arthritogenic alphavirus, we determined that both obese and undernourished mice transmit virus less efficiently to mosquitoes than control (lean) mice. In addition, viral genetic diversity and replicative fitness were reduced in virus isolated from obese compared to lean controls. Taken together, nutrition appears to alter the course of alphavirus infection and should be considered as a critical environmental factor during outbreaks.


Author summary

Over- and undernutrition, collectively known as malnutrition, affect over 2.5 billion people worldwide. Associations between malnutrition and mosquito-borne virus infection and resulting disease have been identified in epidemiological studies but have not been explored in controlled studies. Here, we infect obese or undernourished mice with different arthritis inducing viruses in the genus Alphavirus and measure disease symptoms, viral replication, transmission, and evolution. We found that markers of disease, namely weight loss and footpad swelling, were increased in obese mice. We also found that replication differences between mice fed different diets were minimal except late in infection for obese mice when levels of virus dropped significantly. When mosquitoes were allowed to feed on mice fed different diets, we observed reduced infection and transmission rates, depending on the diet. Finally, we found reduced genetic diversity and replicative fitness of virus isolated from obese mice. This study provides insights into the influence of nutrition on alphavirus pathogenesis and evolution.


Citation: Weger-Lucarelli J, Carrau L, Levi LI, Rezelj V, Vallet T, Blanc H, et al. (2019) Host nutritional status affects alphavirus virulence, transmission, and evolution. PLoS Pathog 15(11): e1008089. https://doi.org/10.1371/journal.ppat.1008089

Editor: Richard J. Kuhn, Purdue University, UNITED STATES

Received: June 23, 2019; Accepted: September 17, 2019; Published: November 11, 2019

Copyright: © 2019 Weger-Lucarelli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: All next-generation sequencing files are uploaded to the small read archive (SRA) under accession number PRJNA573904.

Funding: This work was partially funded by the DARPA program PREventing EMerging Pathogenic Threats (PREEMPT) awarded to MV and JWL. Partial funding was also provided by a faculty start-up package at Virginia Tech awarded to JWL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Competing interests: The authors have declared that no competing interests exist.

Keywords: Arbovirus; Alphavirus; Mosquitoes; Animal models.


#Genomic #Epidemiology as a #PublicHealth #Tool to Combat #Mosquito-Borne Virus #Outbreaks (J Infect Dis., abstract)

[Source: Journal of Infectious Diseases, full page: (LINK). Abstract, edited.]

Genomic Epidemiology as a Public Health Tool to Combat Mosquito-Borne Virus Outbreaks

S Pollett, J R Fauver, Irina Maljkovic Berry, M Melendrez, A Morrison, L D Gillis, M A Johansson, R G Jarman, N D Grubaugh

The Journal of Infectious Diseases, jiz302, https://doi.org/10.1093/infdis/jiz302

Published: 10 November 2019



Next-generation sequencing technologies, exponential increases in the availability of virus genomic data, and ongoing advances in phylogenomic methods have made genomic epidemiology an increasingly powerful tool for public health response to a range of mosquito-borne virus outbreaks. In this review, we offer a brief primer on the scope and methods of phylogenomic analyses that can answer key epidemiological questions during mosquito-borne virus public health emergencies. We then focus on case examples of outbreaks, including those caused by dengue, Zika, yellow fever, West Nile, and chikungunya viruses, to demonstrate the utility of genomic epidemiology to support the prevention and control of mosquito-borne virus threats. We extend these case studies with operational perspectives on how to best incorporate genomic epidemiology into structured surveillance and response programs for mosquito-borne virus control. Many tools for genomic epidemiology already exist, but so do technical and nontechnical challenges to advancing their use. Frameworks to support the rapid sharing of multidimensional data and increased cross-sector partnerships, networks, and collaborations can support advancement on all scales, from research and development to implementation by public health agencies.

Topic: epidemiology – dengue fever – culicidae – disease outbreaks – genome – yellow fever – public health medicine – viruses – surveillance, medical – zika virus

Issue Section: supplement articles

Keywords: Arbovirus; Public Health; Mosquitoes; Genetics.


#Vector-borne #transmission of #Zika virus in #Europe, southern #France, August 2019 (Euro Surveill., abstract)

[Source: Eurosurveillance, full page: (LINK). Abstract, edited.]

Vector-borne transmission of Zika virus in Europe, southern France, August 2019

Sandra Giron1, Florian Franke1, Anne Decoppet2, Bernard Cadiou3, Thierry Travaglini3, Laurence Thirion4, Guillaume Durand4,5, Charles Jeannin3, Grégory L’Ambert3, Gilda Grard4,5, Harold Noël6, Nelly Fournet6, Michelle Auzet-Caillaud2, Christine Zandotti5, Samer Aboukaïs2, Pascal Chaud1, Saby Guedj7, Lakri Hamouda7, Xavier Naudot8, Anne Ovize8, Clément Lazarus9, Henriette de Valk6, Marie-Claire Paty6, Isabelle Leparc-Goffart4,5

Affiliations: 1 Santé publique France (French National Public Health Agency), Marseille, France; 2 Regional Health Agency of Provence-Alpes-Côtes d’Azur (ARS Paca), Marseille, France; 3 Entente interdépartementale pour la démoustication du littoral méditerranéen (EID Méditerranée), Montpellier, France; 4 Unité des Virus Emergents (UVE: Aix-Marseille Univ – IRD 190 – Inserm 1207 – IHU Méditerranée Infection), Marseille, France; 5 Institut de Recherche Biomédicale des Armées, National Reference Laboratory for Arboviruses, Marseille, France; 6 Santé publique France (French National Public Health Agency), Saint-Maurice, France; 7 Médecin généraliste, Hyères, France; 8 Eurofins Biomnis, Lyon, France; 9 Public Health Emergency Operations Centre, Division of Surveillance and Health Security, Ministry of Health, General Directorate for Health, Health Emergencies Crisis Management Centre, Paris, France

Correspondence:  Harold Noel

Citation style for this article: Giron Sandra, Franke Florian, Decoppet Anne, Cadiou Bernard, Travaglini Thierry, Thirion Laurence, Durand Guillaume, Jeannin Charles, L’Ambert Grégory, Grard Gilda, Noël Harold, Fournet Nelly, Auzet-Caillaud Michelle, Zandotti Christine, Aboukaïs Samer, Chaud Pascal, Guedj Saby, Hamouda Lakri, Naudot Xavier, Ovize Anne, Lazarus Clément, de Valk Henriette, Paty Marie-Claire, Leparc-Goffart Isabelle. Vector-borne transmission of Zika virus in Europe, southern France, August 2019. Euro Surveill. 2019;24(45):pii=1900655. https://doi.org/10.2807/1560-7917.ES.2019.24.45.1900655

Received: 29 Oct 2019;   Accepted: 07 Nov 2019



On 1 October 2019, a locally-acquired Zika virus disease case was laboratory confirmed in Hyères, Var department. Active case finding identified two additional locally-acquired cases living within 90 m, with symptom onset 8 days before the index case. Extensive patient interviews did not yield information supporting transmission through sexual contact or substances of human origin. Vector-borne transmission by local Aedes albopictus mosquitoes is the most likely mode of transmission. Here we describe the public health response.

©  This work is licensed under a Creative Commons Attribution 4.0 International License.

Keywords: Zika Virus; France.


#Epidemiologic, #Entomologic, and #Virologic Factors of the 2014–15 #RossRiver Virus #Outbreak, #Queensland, #Australia (Emerg Infect Dis., abstract)

[Source: US Centers for Disease Control and Prevention (CDC), Emerging Infectious Diseases Journal, full page: (LINK). Abstract, edited.]

Volume 25, Number 12—December 2019 / Research

Epidemiologic, Entomologic, and Virologic Factors of the 2014–15 Ross River Virus Outbreak, Queensland, Australia

Cassie C. Jansen, Martin A. Shivas, Fiona J. May, Alyssa T. Pyke, Michael B. Onn, Kerryn Lodo, Sonja Hall-Mendelin, Jamie L. McMahon, Brian L. Montgomery, Jonathan M. Darbro, Stephen L. Doggett, and Andrew F. van den Hurk

Author affiliations: Communicable Diseases Branch, Queensland Government Department of Health, Herston, Queensland, Australia (C.C. Jansen, K. Lodo); Brisbane City Council, Fortitude Valley, Queensland, Australia (M.A. Shivas, M.B. Onn); Metro North Hospital and Health Service, Windsor, Queensland, Australia (F.J. May); Forensic and Scientific Services, Queensland Government Department of Health, Coopers Plains, Queensland, Australia (A.T. Pyke, S. Hall-Mendelin, J.L. McMahon, A.F. van den Hurk); Metro South Hospital and Health Service, Coopers Plains (B.L. Montgomery); Queensland Institute of Medical Research Berghofer, Herston (J.M. Darbro); University of Sydney and Westmead Hospital, Sydney, New South Wales, Australia (S.L. Doggett)



Australia experienced its largest recorded outbreak of Ross River virus (RRV) during the 2014–15 reporting year, comprising >10,000 reported cases. We investigated epidemiologic, entomologic, and virologic factors that potentially contributed to the scale of the outbreak in Queensland, the state with the highest number of notifications (6,371). Spatial analysis of human cases showed that notifications were geographically widespread. In Brisbane, human case notifications and virus detections in mosquitoes occurred across inland and coastal locations. Viral sequence data demonstrated 2 RRV lineages (northeastern genotypes I and II) were circulating, and a new strain containing 3 unique amino acid changes in the envelope 2 protein was identified. Longitudinal mosquito collections demonstrated unusually high relative abundance of Culex annulirostris and Aedes procax mosquitoes, attributable to extensive freshwater larval habitats caused by early and persistent rainfall during the reporting year. Increased prevalence of these mosquitoes probably contributed to the scale of this outbreak.

Keywords: Ross River Virus; Mosquitoes; Culex spp.; Aedes spp.; Queensland; Australia.


#Phylogeography and #invasion #history of #Aedes aegypti, the #Dengue and #Zika #mosquito vector in Cape Verde islands (West Africa) (Evol Appl., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Evol Appl. 2019 Aug 3;12(9):1797-1811. doi: 10.1111/eva.12834. eCollection 2019 Oct.

Phylogeography and invasion history of Aedes aegypti, the Dengue and Zika mosquito vector in Cape Verde islands (West Africa).

Salgueiro P1, Serrano C1, Gomes B1,2, Alves J3, Sousa CA1, Abecasis A1, Pinto J1.

Author information: 1 Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT) Universidade Nova de Lisboa (UNL) Lisboa Portugal. 2 Oswaldo Cruz Institute (IOC) Fundação Oswaldo Cruz (FIOCRUZ) Rio de Janeiro Brasil. 3 Direção Geral de Saúde/Instituto Nacional de Saúde Pública, Ministério da Saúde de Cabo Verde Praia Cabo Verde.



Aedes-borne arboviruses have spread globally with outbreaks of vast impact on human populations and health systems. The West African archipelago of Cape Verde had its first outbreak of Dengue in 2009, at the time the largest recorded in Africa, and was one of the few African countries affected by the Zika virus epidemic. Aedes aegypti was the mosquito vector involved in both outbreaks. We performed a phylogeographic and population genetics study of A. aegypti in Cape Verde in order to infer the geographic origin and evolutionary history of this mosquito. These results are discussed with respect to the implications for vector control and prevention of future outbreaks. Mosquitoes captured before and after the Dengue outbreak on the islands of Santiago, Brava, and Fogo were analyzed with two mitochondrial genes COI and ND4, 14 microsatellite loci and five kdr mutations. Genetic variability was comparable to other African populations. Our results suggest that A. aegypti invaded Cape Verde at the beginning of the Holocene from West Africa. Given the historic importance of Cape Verde in the transatlantic trade of the 16th-17th centuries, a possible contribution to the genetic pool of the founding populations in the New World cannot be fully discarded. However, contemporary gene flow with the Americas is likely to be infrequent. No kdr mutations associated with pyrethroid resistance were detected. The implications for vector control and prevention of future outbreaks are discussed.

KEYWORDS: Aedes aegypti; Africa; Cape Verde; Dengue; Zika; phylogeography; population genetics; vector control

PMID: 31548858 PMCID: PMC6752157 DOI: 10.1111/eva.12834

Keywords: Mosquitoes; Aedes aegypti; Zika virus; Dengue fever; Cape Verde.


#Vector #Competence: What Has #Zika Virus Taught Us? (Viruses, abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Viruses. 2019 Sep 17;11(9). pii: E867. doi: 10.3390/v11090867.

Vector Competence: What Has Zika Virus Taught Us?

Azar SR1,2,3, Weaver SC4,5,6.

Author information: 1 Department of Microbiology and Immunology, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA. srazar@utmb.edu. 2 Institute for Translational Sciences, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA. srazar@utmb.edu. 3 Institute for Human Infections and Immunity, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA. srazar@utmb.edu. 4 Department of Microbiology and Immunology, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA. sweaver@utmb.edu. 5 Institute for Translational Sciences, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA. sweaver@utmb.edu. 6 Institute for Human Infections and Immunity, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA. sweaver@utmb.edu.



The unprecedented outbreak of Zika virus (ZIKV) infection in the Americas from 2015 to 2017 prompted the publication of a large body of vector competence data in a relatively short period of time. Although differences in vector competence as a result of disparities in mosquito populations and viral strains are to be expected, the limited competence of many populations of the urban mosquito vector, Aedes aegypti, from the Americas (when its susceptibility is viewed relative to other circulating/reemerging mosquito-borne viruses such as dengue (DENV), yellow fever (YFV), and chikungunya viruses (CHIKV)) has proven a paradox for the field. This has been further complicated by the lack of standardization in the methodologies utilized in laboratory vector competence experiments, precluding meta-analyses of this large data set. As the calls for the standardization of such studies continue to grow in number, it is critical to examine the elements of vector competence experimental design. Herein, we review the various techniques and considerations intrinsic to vector competence studies, with respect to contemporary findings for ZIKV, as well as historical findings for other arboviruses, and discuss potential avenues of standardization going forward.

KEYWORDS: Aedes aegypti; Flaviviruses; Zika virus; arbovirus; mosquitoes; vector competence

PMID: 31533267 DOI: 10.3390/v11090867

Keywords: Mosquitoes; Aedes aegypti; Flavivirus; Zika Virus.