A study of the relationship between #human #infection with #avian #influenza A #H5N6 and environmental avian influenza viruses in #Fujian, #China (BMC Infect Dis., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

BMC Infect Dis. 2019 Sep 2;19(1):762. doi: 10.1186/s12879-019-4145-6.

A study of the relationship between human infection with avian influenza a (H5N6) and environmental avian influenza viruses in Fujian, China.

Chen P1, Xie JF1,2, Lin Q2, Zhao L2, Zhang YH2, Chen HB2, Weng YW1,2, Huang Z2, Zheng KC3,4.

Author information: 1 College of Public Health, Fujian Medical University, No. 88, Jiaotong Road, Taijiang District, Fuzhou, 350000, China. 2 Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China. 3 College of Public Health, Fujian Medical University, No. 88, Jiaotong Road, Taijiang District, Fuzhou, 350000, China. kingdadi9909@126.com. 4 Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China. kingdadi9909@126.com.

 

Abstract

BACKGROUND:

Avian influenza A (H5N6) virus poses a great threat to the human health since it is capable to cross the species barrier and infect humans. Although human infections are believed to largely originate from poultry contaminations, the transmissibility is unclear and only limited information was available on poultry environment contaminations, especially in Fujian Province.

METHODS:

A total of 4901 environmental samples were collected and tested for Avian Influenza Virus (AIV) from six cities in Fujian Province through the Fujian Influenza Surveillance System from 2013 to 2017. Two patient-related samples were taken from Fujian’s first confirmed H5N6 human case and his backyard chicken feces in 2017. Chi-square test or Fisher’s exact probability test was used to compare the AIV and the viral subtype positive rates among samples from different Surveillance cities, surveillance sites, sample types, and seasons. Phylogenetic tree analysis and molecular analysis were conducted to track the viral transmission route of the human infection and to map out the evolutions of H5N6 in Fujian.

RESULTS:

The overall positive rate of the H5 subtype AIVs was 4.24% (208/4903). There were distinctive differences (p < 0.05) in the positive rates in samples from different cities, sample sites, sample types and seasons. The viruses from the patient and his backyard chicken feces shared high homologies (99.9-100%) in all the eight gene segments. Phylogenetic trees also showed that these two H5N6 viruses were closely related to each other, and were classified into the same genetic clade 2.3.4.4 with another six H5N6 isolates from the environmental samples. The patient’s H5N6 virus carried genes from H6N6, H5N8 and H5N6 viruses originated from different areas. The R294K or N294S substitution was not detected in the neuraminidase (NA). The S31 N substitution in the matrix2 (M2) gene was detected but only in one strain from the environmental samples.

CONCLUSIONS:

The H5 subtype of AIVs has started circulating in the poultry environments in Fujian Province. The patient’s viral strain originated from the chicken feces in his backyard. Genetic reassortment in H5N6 viruses in Fujian Province was indicated. The H5N6 viruses currently circulating in Fujian Province were still commonly sensitive to Oseltamivir and Zanamivir, but the resistance against Amantadine has emerged.

KEYWORDS: Avian influenza a (H5N6) virus; Environmental contamination; Phylogenetic analysis

PMID: 31477028 PMCID: PMC6719373 DOI: 10.1186/s12879-019-4145-6 [Indexed for MEDLINE] Free PMC Article

Keywords: Avian Influenza; H5N6; H5N8; H6N6; Reassortant strain; Human; Poultry; Fujian; China.

——

A study of the #relationship between #human #infection with #avian #influenza a (#H5N6) and environmental avian influenza viruses in #Fujian, #China (BMC Infect Dis., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

BMC Infect Dis. 2019 Sep 2;19(1):762. doi: 10.1186/s12879-019-4145-6.

A study of the relationship between human infection with avian influenza a (H5N6) and environmental avian influenza viruses in Fujian, China.

Chen P1, Xie JF1,2, Lin Q2, Zhao L2, Zhang YH2, Chen HB2, Weng YW1,2, Huang Z2, Zheng KC3,4.

Author information: 1 College of Public Health, Fujian Medical University, No. 88, Jiaotong Road, Taijiang District, Fuzhou, 350000, China. 2 Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China. 3 College of Public Health, Fujian Medical University, No. 88, Jiaotong Road, Taijiang District, Fuzhou, 350000, China. kingdadi9909@126.com. 4 Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China. kingdadi9909@126.com.

 

Abstract

BACKGROUND:

Avian influenza A (H5N6) virus poses a great threat to the human health since it is capable to cross the species barrier and infect humans. Although human infections are believed to largely originate from poultry contaminations, the transmissibility is unclear and only limited information was available on poultry environment contaminations, especially in Fujian Province.

METHODS:

A total of 4901 environmental samples were collected and tested for Avian Influenza Virus (AIV) from six cities in Fujian Province through the Fujian Influenza Surveillance System from 2013 to 2017. Two patient-related samples were taken from Fujian’s first confirmed H5N6 human case and his backyard chicken feces in 2017. Chi-square test or Fisher’s exact probability test was used to compare the AIV and the viral subtype positive rates among samples from different Surveillance cities, surveillance sites, sample types, and seasons. Phylogenetic tree analysis and molecular analysis were conducted to track the viral transmission route of the human infection and to map out the evolutions of H5N6 in Fujian.

RESULTS:

The overall positive rate of the H5 subtype AIVs was 4.24% (208/4903). There were distinctive differences (p < 0.05) in the positive rates in samples from different cities, sample sites, sample types and seasons. The viruses from the patient and his backyard chicken feces shared high homologies (99.9-100%) in all the eight gene segments. Phylogenetic trees also showed that these two H5N6 viruses were closely related to each other, and were classified into the same genetic clade 2.3.4.4 with another six H5N6 isolates from the environmental samples. The patient’s H5N6 virus carried genes from H6N6, H5N8 and H5N6 viruses originated from different areas. The R294K or N294S substitution was not detected in the neuraminidase (NA). The S31 N substitution in the matrix2 (M2) gene was detected but only in one strain from the environmental samples.

CONCLUSIONS:

The H5 subtype of AIVs has started circulating in the poultry environments in Fujian Province. The patient’s viral strain originated from the chicken feces in his backyard. Genetic reassortment in H5N6 viruses in Fujian Province was indicated. The H5N6 viruses currently circulating in Fujian Province were still commonly sensitive to Oseltamivir and Zanamivir, but the resistance against Amantadine has emerged.

KEYWORDS: Avian influenza a (H5N6) virus; Environmental contamination; Phylogenetic analysis

PMID: 31477028 DOI: 10.1186/s12879-019-4145-6

Keywords: Antivirals; Drugs Resistance; Oseltamivir; Zanamivir; Amantadine; H5N6; H6N6; H5N8; Reassortant strain; Avian Influenza; Human; Fujian; China.

—–

Emergence of #waterfowl-originated #gene cassettes in HPAI #H7N9 viruses caused severe #human #infection in #Fujian, #China (Influenza Other Respir Viruses, abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Influenza Other Respir Viruses. 2019 Jun 11. doi: 10.1111/irv.12657. [Epub ahead of print]

Emergence of waterfowl-originated gene cassettes in HPAI H7N9 viruses caused severe human infection in Fujian, China.

Yang L1, Xie J2,3, Zhang Y1, Zhu W1, Li X1, Wei H1, Li Z1, Zhao L2, Bo H1, Liu J1, Dong J1, Chen T1, Shu Y1,4, Weng Y2,3, Wang D1.

Author information: 1 National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. 2 Fujian center for disease control and prevention, Fuzhou, China. 3 Fujian provincial key laboratory of zoonosis research, Fuzhou, China. 4 School of Public Health Shenzhen, Sun Yat-sen University, Guangdong, China.

 

Abstract

BACKGROUND:

Highly pathogenic avian influenza (HPAI) A(H7N9) virus emerged and caused human infections during the 2016-2017 epidemic wave of influenza A(H7N9) viruses in China. We report a human infection with HPAI H7N9 virus and six environmental isolates in Fujian Province, China.

METHODS:

Environmental surveillance was conducted in live poultry markets and poultry farms in Fujian, China. Clinical and epidemiologic data and samples were collected. Real-time RT-PCRs were conducted for each sample, and H7-positive samples were isolated using embryonated chicken eggs. Full genomes of the isolates were obtained by next-generation sequencing. Phylogenetic analysis and antigenic analysis were conducted.

RESULTS:

A 59-year-old man who raised about 1000 ducks was identified as HPAI H7N9 infection. Six HPAI H7 viruses were isolated from environmental samples, including five H7N9 viruses and one H7N6 virus. Phylogenetic results showed the human and environmental viruses are highly genetically diverse and containing significantly different gene constellation from that of other HPAI H7N9 previously reported. The internal genes derived from H7N9/H9N2, H5N6, and the Eurasian wild-bird gene pool, indicating waterfowl-originated genotypes, have emerged in HPAI H7N9/N6 viruses and caused human infection.

CONCLUSION:

The new genotypes raise the concern that these HPAI H7 viruses might transmit back into migratory birds and spread to other countries as the HPAI H5Nx viruses. Considering their capability of causing severe infections in both human and poultry, the HPAI H7 viruses in this study pose a risk to public health and the poultry industry and highlight the importance of sustained surveillance of these viruses.

© 2019 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

KEYWORDS: H7N9 virus; avian influenza; genetic diversity; infection

PMID: 31187583 DOI: 10.1111/irv.12657

Keywords: Avian Influenza; H5N6; H7N6; H7N9; H9N2; Reassortant Strain; Wild birds; Human; Fujian; China.

——

Complete #Genome Sequence of a Novel Swine Acute Diarrhea Syndrome #Coronavirus, CH/FJWT/2018, Isolated in #Fujian, #China, in 2018 (Microbiol Resour Announc., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Microbiol Resour Announc. 2018 Dec 6;7(22). pii: e01259-18. doi: 10.1128/MRA.01259-18. eCollection 2018 Dec.

Complete Genome Sequence of a Novel Swine Acute Diarrhea Syndrome Coronavirus, CH/FJWT/2018, Isolated in Fujian, China, in 2018.

Li K#1,2, Li H#1,2, Bi Z1,2, Gu J1,2, Gong W1,2, Luo S1,2, Zhang F1,2, Song D1,2, Ye Y1,2, Tang Y1,2.

Author information: 1 Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, China. 2 Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China. # Contributed equally

 

Abstract

The full-length genome sequence of a novel swine acute diarrhea syndrome coronavirus (SADS-CoV), CH/FJWT/2018, was determined, which was genetically most closely related to CN/GDWT/2017, recently discovered in Fujian, China. The indel sites of the spike (S) gene of CH/FJWT/2018 were most similar to those of bat-origin SADS-related coronaviruses.

PMID: 30533848 PMCID: PMC6284080 DOI: 10.1128/MRA.01259-18 Free full text

Keywords: Coronavirus; Pigs; SADS-CoV; Fujian; China.

—–