Strong #correlation between the rates of intrinsically #antibiotic #resistant species and the rates of acquired resistance in Gram-negative species causing #bacteraemia, #EU/EEA, 2016 (Euro Surveill., abstract)

[Source: Eurosurveillance, full page: (LINK). Abstract, edited.]

Strong correlation between the rates of intrinsically antibiotic-resistant species and the rates of acquired resistance in Gram-negative species causing bacteraemia, EU/EEA, 2016

Vincent Jarlier 1,2, Liselotte Diaz Högberg 3, Ole E Heuer 3, José Campos 4, Tim Eckmanns 5, Christian G Giske 6,7, Hajo Grundmann 8,Alan P Johnson 9, Gunnar Kahlmeter 10, Jos Monen 11, Annalisa Pantosti 12, Gian Maria Rossolini 13,14, Nienke van de Sande-Bruinsma 15,Alkiviadis Vatopoulos 16, Dorota Żabicka 17, Helena Žemličková 18,19, Dominique L Monnet 3, Gunnar Skov Simonsen 20,21, EARS-Net participants 22

Affiliations: 1 Sorbonne Universités (Paris 06) Inserm Centre d’Immunologie et des Maladies Infectieuses (CIMI), UMR 1135, Paris, France; 2 Assistance Publique – Hôpitaux de Paris, Pitié-Salpêtrière hospital, Laboratoire de Bactériologie-Hygiène, Paris, France; 3 European Centre for Disease Prevention and Control, Solna, Sweden; 4 Reference and Research Laboratory on Antimicrobial Resistance, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain; 5 Robert Koch Institute, Department for Infectious Disease Epidemiology, Berlin, Germany; 6 Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; 7 Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; 8 Medical Center – University of Freiburg, Department for Infection Prevention and Hospital Epidemiology, Freiburg, Germany; 9 National Infection Service, Public Health England, London, United Kingdom; 10 Clinical Microbiology, Central Hospital, Växjö, Sweden; 11 National Institute for Public Health and the Environment, Bilthoven, the Netherlands; 12 Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy; 13 Department of Experimental and Clinical Medicine, University of Florence, Italy; 14 Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy; 15 Pan American Health Organization/World Health Organization (PAHO/ WHO), Washington DC, United States; 16 Department of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece; 17 Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland; 18 National Institute of Public Health, National Reference Laboratory for Antibiotics, Prague, Czech Republic; 19 Department of Clinical Microbiology, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czech Republic; 20 Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway; 21 Research Group for Host-Microbe Interaction, Faculty of Health Sciences, UiT – The Arctic University of Norway, Tromsø, Norway; 22 The members of the group are listed at the end of the article

Correspondence:  Liselotte Diaz Högberg

Citation style for this article: Jarlier Vincent, Diaz Högberg Liselotte, Heuer Ole E, Campos José, Eckmanns Tim, Giske Christian G, Grundmann Hajo, Johnson Alan P,Kahlmeter Gunnar, Monen Jos, Pantosti Annalisa, Rossolini Gian Maria, van de Sande-Bruinsma Nienke, Vatopoulos Alkiviadis, Żabicka Dorota, Žemličková Helena,Monnet Dominique L, Simonsen Gunnar Skov, EARS-Net participants. Strong correlation between the rates of intrinsically antibiotic-resistant species and the rates of acquired resistance in Gram-negative species causing bacteraemia, EU/EEA, 2016. Euro Surveill. 2019;24(33):pii=1800538. https://doi.org/10.2807/1560-7917.ES.2019.24.33.1800538

Received: 03 Oct 2018;   Accepted: 01 Apr 2019

 

Abstract

Background

Antibiotic resistance, either intrinsic or acquired, is a major obstacle for treating bacterial infections.

Aim

Our objective was to compare the country-specific species distribution of the four Gram-negative species Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter species and the proportions of selected acquired resistance traits within these species.

Method

We used data reported for 2016 to the European Antimicrobial Resistance Surveillance Network (EARS-Net) by 30 countries in the European Union and European Economic Area.

Results

The country-specific species distribution varied considerably. While E. coli accounted for 31.9% to 81.0% (median: 69.0%) of all reported isolates, the two most common intrinsically resistant species P. aeruginosa and Acinetobacterspp. combined (PSEACI) accounted for 5.5% to 39.2% of isolates (median: 10.1%). Similarly, large national differences were noted for the percentages of acquired non-susceptibility to third-generation cephalosporins, carbapenems and fluoroquinolones. There was a strong positive rank correlation between the country-specific percentages of PSEACI and the percentages of non-susceptibility to the above antibiotics in all four species (rho > 0.75 for 10 of the 11 pairs of variables tested).

Conclusion

Countries with the highest proportion of P. aeruginosa and Acinetobacter spp. were also those where the rates of acquired non-susceptibility in all four studied species were highest. The differences are probably related to national differences in antibiotic consumption and infection prevention and control routines.

©  This work is licensed under a Creative Commons Attribution 4.0 International License.

Keywords: Antibiotics; Drugs Resistance; Bacteremia; EU.

——

Advertisements

An #international #outbreak of #Salmonella enterica serotype Enteritidis linked to #eggs from #Poland: a microbiological and epidemiological study (Lancet Infect Dis., abstract)

[Source: The Lancet Infectious Diseases, full page: (LINK). Abstract, edited.]

An international outbreak of Salmonella enterica serotype Enteritidis linked to eggs from Poland: a microbiological and epidemiological study

Roan Pijnacker, MSc  *, Timothy J Dallman, PhD *, Aloys S L Tijsma, PhD, Gillian Hawkins, MBChB, Lesley Larkin, BVSc, Saara M Kotila, MSc, Giusi Amore, PhD, Ettore Amato, PhD, Pamina M Suzuki, MSc, Sarah Denayer, PhD, Sofieke Klamer, MSc, Judit Pászti, Jacquelyn McCormick, MPH, Hassan Hartman, PhD, Gareth J Hughes, PhD, Lin C T Brandal, PhD, Derek Brown, MSc, Joël Mossong, PhD, Cecilia Jernberg, PhD, Luise Müller, MSc, Daniel Palm, PhD, Ettore Severi, MSc, Joannna Gołębiowska, DVM, Blaženka Hunjak, PhD, Slawomir Owczarek, MSc, Simon Le Hello, PhD, Patricia Garvey, PhD, Kirsten Mooijman, MSc, Ingrid H M Friesema, PhD, Coen van der Weijden, BSc, Menno van der Voort, PhD, Valentina Rizzi, PhD, Eelco Franz, PhD on behalf of theInternational Outbreak Investigation Team †

Published: May 24, 2019 / DOI: https://doi.org/10.1016/S1473-3099(19)30047-7

 

Summary

Background

Salmonella spp are a major cause of food-borne outbreaks in Europe. We investigated a large multi-country outbreak ofSalmonella enterica serotype Enteritidis in the EU and European Economic Area (EEA).

Methods

A confirmed case was defined as a laboratory-confirmed infection with the outbreak strains of S Enteritidis based on whole-genome sequencing (WGS), occurring between May 1, 2015, and Oct 31, 2018. A probable case was defined as laboratory-confirmed infection withS Enteritidis with the multiple-locus variable-number tandem repeat analysis outbreak profile. Multi-country epidemiological, trace-back, trace-forward, and environmental investigations were done. We did a case-control study including confirmed and probable cases and controls randomly sampled from the population registry (frequency matched by age, sex, and postal code). Odds ratios (ORs) for exposure rates between cases and controls were calculated with unmatched univariable and multivariable logistic regression.

Findings

18 EU and EEA countries reported 838 confirmed and 371 probable cases. 509 (42%) cases were reported in 2016, after which the number of cases steadily increased. The case-control study results showed that cases more often ate in food establishments than did controls (OR 3·4 [95% CI 1·6–7·3]), but no specific food item was identified. Recipe-based food trace-back investigations among cases who ate in food establishments identified eggs from Poland as the vehicle of infection in October, 2016. Phylogenetic analysis identified two strains of S Enteritidis in human cases that were subsequently identified in salmonella-positive eggs and primary production premises in Poland, confirming the source of the outbreak. After control measures were implemented, the number of cases decreased, but increased again in March, 2017, and the increase continued into 2018.

Interpretation

This outbreak highlights the public health value of multi-country sharing of epidemiological, trace-back, and microbiological data. The re-emergence of cases suggests that outbreak strains have continued to enter the food chain, although changes in strain population dynamics and fewer cases indicate that control measures had some effect. Routine use of WGS in salmonella surveillance and outbreak response promises to identify and stop outbreaks in the future.

Funding

European Centre for Disease Prevention and Control; Directorate General for Health and Food Safety, European Commission; and National Public Health and Food Safety Institutes of the authors’ countries (see Acknowledgments for full list).

Keywords: Food Safety; EU; European Region; Samonella spp.

—–

#Resistance #proportions for eight priority #antibiotic – #bacterium combinations in #OECD, #EU/EEA and #G20 countries 2000 to 2030: a modelling study (Euro Surveill., abstract)

[Source: Eurosurveillance, full page: (LINK). Abstract, edited.]

Resistance proportions for eight priority antibiotic-bacterium combinations in OECD, EU/EEA and G20 countries 2000 to 2030: a modelling study

Tiago Cravo Oliveira Hashiguchi1, Driss Ait Ouakrim1, Michael Padget1, Alessandro Cassini2, Michele Cecchini1

Affiliations: 1 Organisation for Economic Co-operation and Development (OECD), Paris, France; 2 European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden

Correspondence:  Tiago Cravo Oliveira Hashiguchi

Citation style for this article: Cravo Oliveira Hashiguchi Tiago , Ait Ouakrim Driss , Padget Michael, Cassini Alessandro, Cecchini Michele. Resistance proportions for eight priority antibiotic-bacterium combinations in OECD, EU/EEA and G20 countries 2000 to 2030: a modelling study. Euro Surveill. 2019;24(20):pii=1800445. https://doi.org/10.2807/1560-7917.ES.2019.24.20.1800445

Received: 10 Aug 2018;   Accepted: 21 Mar 2019

 

Abstract

Background

Antimicrobial resistance is widely considered an urgent global health issue due to associated mortality and disability, societal and healthcare costs.

Aim

To estimate the past, current and projected future proportion of infections resistant to treatment for eight priority antibiotic-bacterium combinations from 2000 to 2030 for 52 countries.

Methods

We collated data from a variety of sources including ResistanceMap and World Bank. Feature selection algorithms and multiple imputation were used to produce a complete historical dataset. Forecasts were derived from an ensemble of three models: exponential smoothing, linear regression and random forest. The latter two were informed by projections of antibiotic consumption, out-of-pocket medical spending, populations aged 64 years and older and under 15 years and real gross domestic product. We incorporated three types of uncertainty, producing 150 estimates for each country-antibiotic-bacterium-year.

Results

Average resistance proportions across antibiotic-bacterium combinations could grow moderately from 17% to 18% within the Organisation for Economic Co-operation and Development (OECD; growth in 64% of uncertainty sets), from 18% to 19% in the European Union/European Economic Area (EU/EEA; growth in 87% of uncertainty sets) and from 29% to 31% in Group of Twenty (G20) countries (growth in 62% of uncertainty sets) between 2015 and 2030. There is broad heterogeneity in levels and rates of change across countries and antibiotic-bacterium combinations from 2000 to 2030.

Conclusion

If current trends continue, resistance proportions are projected to marginally increase in the coming years. The estimates indicate there is significant heterogeneity in resistance proportions across countries and antibiotic-bacterium combinations.

© This work is licensed under a Creative Commons Attribution 4.0 International License.

Keywords: Antibiotics; Drugs Resistance; European Region; EU.

——

#WNV and #Usutu Virus #Infections and Challenges to #Blood #Safety in the #EU (Emerg Infect Dis., abstract)

[Source: US Centers for Disease Control and Prevention (CDC), Emerging Infectious Diseases Journal, full page: (LINK). Abstract, edited.]

Volume 25, Number 6—June 2019 / Perspective

West Nile and Usutu Virus Infections and Challenges to Blood Safety in the European Union

Dragoslav Domanović  , Celine M. Gossner, Ryanne Lieshout-Krikke, Wolfgang Mayr, Klara Baroti-Toth, Alina Mirella Dobrota, Maria Antonia Escoval, Olaf Henseler, Christof Jungbauer, Giancarlo Liumbruno, Salvador Oyonarte, Constantina Politis, Imad Sandid, Miljana Stojić Vidović, Johanna J. Young, Inês Ushiro-Lumb, and Norbert Nowotny

Author affiliations: European Centre for Disease Prevention and Control, Solna, Sweden (D. Domanović, C.M. Gossner, J.J. Young); European Blood Alliance, Amsterdam, the Netherlands (R. Lieshout-Krikke); Austrian Red Cross, Vienna, Austria (W. Mayr, C. Jungbauer); National Competent Authority for Blood, Budapest, Hungary (K. Baroti-Toth); National Competent Authority for Blood, Bucharest, Romania (A.M. Dobrota); National Competent Authority for Blood, Lisbon, Portugal (M.A. Escoval); Paul Ehrlich Institute, Langen, Germany (O. Henseler); Italian National Blood Centre, National Institute of Health, Rome, Italy (G. Liumbruno); National Competent Authority for Blood, Madrid, Spain (S. Oyonarte); Hellenic Center for Disease Control and Prevention (KEELPNO), Athens, Greece (C. Politis); National Competent Authority for Blood, Paris, France (I. Sandid); Croatian Institute for Transfusion Medicine, Zagreb, Croatia (M.S. Vidović); National Health Service Blood and Transplant (NHSBT), London, UK (I. Ushiro-Lumb); University of Veterinary Medicine, Vienna, Austria (N. Nowotny); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (N. Nowotny)

 

Abstract

West Nile virus (WNV) and Usutu virus (USUV) circulate in several European Union (EU) countries. The risk of transfusion-transmitted West Nile virus (TT-WNV) has been recognized, and preventive blood safety measures have been implemented. We summarized the applied interventions in the EU countries and assessed the safety of the blood supply by compiling data on WNV positivity among blood donors and on reported TT-WNV cases. The paucity of reported TT-WNV infections and the screening results suggest that blood safety interventions are effective. However, limited circulation of WNV in the EU and presumed underrecognition or underreporting of TT-WNV cases contribute to the present situation. Because of cross-reactivity between genetically related flaviviruses in the automated nucleic acid test systems, USUV-positive blood donations are found during routine WNV screening. The clinical relevance of USUV infection in humans and the risk of USUV to blood safety are unknown.

Keywords: Usutu virus; WNV; Blood safety; EU.

——

The use of #aminoglycosides in #animals within the #EU: development of #resistance in animals and possible #impact on #human and animal #health: a review (J Antimicrob Chemother., abstract)

[Source: Journal of Antimicrobial Chemotherapy, full page: (LINK). Abstract, edited.]

The use of aminoglycosides in animals within the EU: development of resistance in animals and possible impact on human and animal health: a review

Engeline van Duijkeren, Christine Schwarz, Damien Bouchard, Boudewijn Catry, Constança Pomba, Keith Edward Baptiste, Miguel A Moreno, Merja Rantala, Modestas Ružauskas, Pascal Sanders, Christopher Teale, Astrid L Wester, Kristine Ignate, Zoltan Kunsagi, Helen Jukes

Journal of Antimicrobial Chemotherapy, dkz161, https://doi.org/10.1093/jac/dkz161

Published: 19 April 2019

 

Abstract

Aminoglycosides (AGs) are important antibacterial agents for the treatment of various infections in humans and animals. Following extensive use of AGs in humans, food-producing animals and companion animals, acquired resistance among human and animal pathogens and commensal bacteria has emerged. Acquired resistance occurs through several mechanisms, but enzymatic inactivation of AGs is the most common one. Resistance genes are often located on mobile genetic elements, facilitating their spread between different bacterial species and between animals and humans. AG resistance has been found in many different bacterial species, including those with zoonotic potential such as Salmonella spp., Campylobacter spp. and livestock-associated MRSA. The highest risk is anticipated from transfer of resistant enterococci or coliforms (Escherichia coli) since infections with these pathogens in humans would potentially be treated with AGs. There is evidence that the use of AGs in human and veterinary medicine is associated with the increased prevalence of resistance. The same resistance genes have been found in isolates from humans and animals. Evaluation of risk factors indicates that the probability of transmission of AG resistance from animals to humans through transfer of zoonotic or commensal foodborne bacteria and/or their mobile genetic elements can be regarded as high, although there are no quantitative data on the actual contribution of animals to AG resistance in human pathogens. Responsible use of AGs is of great importance in order to safeguard their clinical efficacy for human and veterinary medicine.

Issue Section: Review

© The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Keywords: Antibiotics; Drugs Resistance; Aminoglycosides; Food safety.

——

#PublicHealth–Driven #Research and Innovation for Next-Generation #Influenza #Vaccines, #EU (Emerg Infect Dis., abstract)

[Source: US Centers for Disease Control and Prevention (CDC), Emerging Infectious Diseases Journal, full page: (LINK). Abstract, edited.]

Volume 25, Number 2—February 2019 / Online Report

Public Health–Driven Research and Innovation for Next-Generation Influenza Vaccines, European Union

Adoración Navarro-Torné  , Finnian Hanrahan, Barbara Kerstiëns, Pilar Aguar, and Line Matthiessen

Author affiliations: European Commission Directorate-General for Research and Innovation, Brussels, Belgium

 

Abstract

Influenza virus infections are a major public health threat. Vaccination is available, but unpredictable antigenic changes in circulating strains require annual modification of seasonal influenza vaccines. Vaccine effectiveness has proven limited, particularly in certain groups, such as the elderly. Moreover, preparedness for upcoming pandemics is challenging because we can predict neither the strain that will cause the next pandemic nor the severity of the pandemic. The European Union fosters research and innovation to develop novel vaccines that evoke broadly protective and long-lasting immune responses against both seasonal and pandemic influenza, underpinned by a political commitment to global public health.

Keywords: Pandemic Influenza; Pandemic Preparedness; Vaccines; EU.

——

The #EU #summary #report on #surveillance for the presence of transmissible spongiform #encephalopathies (#TSEs) in 2017 (EFSA, abstract)

[Source: European Food Safety Authority (EFSA), full page: (LINK). Abstract, edited.]

Scientific Report  / Open Access

The European Union summary report on surveillance for the presence of transmissible spongiform encephalopathies (TSEs) in 2017

European Food Safety Authority (EFSA) / First published: 28 November 2018 / DOI:  https://doi.org/10.2903/j.efsa.2018.5492

Correspondence: zoonoses@efsa.europa.eu

Requestor: European Commission

Question number: EFSA‐Q‐2017‐00753

Acknowledgements: EFSA wishes to thank for the support provided to this scientific output to the EFSA staff members: Yves Van der Stede, Angel Ortiz Pelaez, Valentina Rizzi, Pietro Stella and Frank Boelaert, and to the EFSA contractor: Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta (Unit BEAR – Biostatistica Epidemiologia e Analisi del Rischio and staff: Giuseppe Ru, Francesco Ingravalle, Cristina Bona, Rosanna Desiato, Cristiana Maurella and Eleonora Aiassa).

Approved: 6 November 2018

 

Abstract

This report presents the results of surveillance on transmissible spongiform encephalopathies (TSEs) in bovine animals, sheep, goats, cervids and other animal species, as well as genotyping in sheep, carried out in 2017 in the European Union (EU) according to Regulation (EC) 999/2001, and in Iceland, Norway and Switzerland. In total, 1,312,714 cattle were tested by the 28 EU Member States (MSs) which is a decrease of 3% compared with 2016; 18,526 were tested by the three non‐MSs. For the first time since bovine spongiform encephalopathy (BSE) has been reported, no cases of classical BSE were reported in 2017. Six atypical BSE cases were reported by three different MSs: Spain 1 H‐BSE/2 L‐BSE; France 1 H‐BSE/1 L‐BSE; and Ireland 1 L‐BSE. Over the year, 314,547 sheep and 117,268 goats were tested in the EU. In sheep, 933 cases of scrapie were reported: 839 classical and unknown (145 index cases) by eight MSs and 94 atypical (89 index cases) by 13 MSs. Fourteen ovine scrapie cases were reported by Iceland and Norway. Of all classical scrapie cases, 98.2% occurred in sheep with genotypes of susceptible groups. The genotyping of a random sample in 21 MSs showed that 26.5% of the genotyped sheep carried genotypes of the susceptible groups. In goats 567 cases of scrapie were reported: 558 classical (42 index cases) by seven MSs and nine atypical (seven index cases) by five MSs. In total, 3,585 cervids were tested for TSE by ten MSs, mostly by Romania. All results were negative. Eleven cases of chronic wasting disease (CWD) cases were reported in cervids by Norway: nine wild reindeer, one moose and, for the first time ever, one red deer. In total, 185 animals from five species other than cattle, small ruminants and cervids were tested by three MSs, with negative results.

Keywords: Prions; TSE; Mad Cow; Scrapie; Chronic Wasting Disease; Cattle; Cervids; Sheeps; EU.

——