A 7-year #surveillance of the #drug #resistance in #Klebsiella pneumoniae from a primary #healthcare center (Ann Clin Microbiol Antimicrob., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Ann Clin Microbiol Antimicrob. 2019 Nov 9;18(1):34. doi: 10.1186/s12941-019-0335-8.

A 7-year surveillance of the drug resistance in Klebsiella pneumoniae from a primary health care center.

Li G1, Zhao S1, Wang S1, Sun Y1, Zhou Y1, Pan X2.

Author information: 1 Department of Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China. 2 Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, No. 60 Wuningxi Road, Dongyang, Zhejiang, China. panfengyuwuzu@163.com.

 

Abstract

BACKGROUND:

The increased prevalence of Klebsiella pneumoniae infections and resistance rates are a current cause for concern. However, data for resistance rates in K. pneumoniae strains from primary hospitals and the resistance distribution among the different isolate sample sources are scarce.

METHODS:

All the K. pneumoniae strains were isolated from patients who visited a primary health care center located in Central Zhejiang Province from January 2011 to December 2017. The specimens included blood, sputum, cervical secretions and urine. The species were identified by the Vitek 2 Compact Bacterial Identification and Monitoring System or VITEK-MS and the extended spectrum β-lactamase (ESBL) and drug resistance profiles were identified using the AST-GN13 Gram negative susceptibility card (VITEK-2). The genotype of strains from urine sources was analyzed by detecting TEM and SHV genes. Finally, the drug resistance rates among the isolates from different sample sources were analyzed using the Chi square test with SPSS software.

RESULTS:

A total of 5319 K. pneumoniae strains were isolated in this study. Among the 20 antimicrobial drugs studied, the resistance rates of K. pneumoniae strains varied from 1.4% (ertapenem) to 23.1% (nitrofurantoin). The antibiotic resistance rates varied significantly among the isolate samples sources for all, with the highest rates for all antibiotics except for nitrofurantoin found in urine samples. In addition, the ESBL-positive rate in urine samples was 27.1%, significantly higher than that of cervical secretions (20.2%), blood (16.5%) and sputum (15.2%). Compared to the ESBL-negative strains, higher resistance rates were detected in the ESBL-positive strains. The most common genotype of isolates from urine was SHV (28%, 23/82), following by TEM (14.6%, 12/82).

CONCLUSION:

The highest resistance rates of K. pneumoniae strains to most antibiotics found in urine samples are partly due to the ESBLs, indicating that a special attention should be paid in the treatment of urinary tract infection.

KEYWORDS: Drug resistance; ESBL; Klebsiella pneumoniae; Urine

PMID: 31706307 DOI: 10.1186/s12941-019-0335-8

Keywords: Antibiotics; Drugs Resistance; UTI; China; Nosocomial outbreaks.

—–

Reduced #ceftazidime and #ertapenem susceptibility due to production of #OXA-2 in #Klebsiella pneumoniae ST258 (J Antimicrob Chemother., abstract)

[Source: Journal of Antimicrobial Chemotherapy, full page: (LINK). Abstract, edited.]

Reduced ceftazidime and ertapenem susceptibility due to production of OXA-2 in Klebsiella pneumoniaeST258

Alina Iovleva, Roberta T Mettus, Christi L McElheny, Mustapha M Mustapha, Daria Van Tyne, Ryan K Shields, A William Pasculle, Vaughn S Cooper, Yohei Doi

Journal of Antimicrobial Chemotherapy, dkz183, https://doi.org/10.1093/jac/dkz183

Published: 24 May 2019

 

Abstract

Background

OXA-2 is a class D β-lactamase that confers resistance to penicillins, as well as narrow-spectrum cephalosporins. OXA-2 was recently reported to also possess carbapenem-hydrolysing activity. Here, we describe a KPC-2-encoding Klebsiella pneumoniae isolate that demonstrated reduced susceptibility to ceftazidime and ertapenem due to production of OXA-2.

Objectives

To elucidate the role of OXA-2 production in reduced ceftazidime and ertapenem susceptibility in a K. pneumoniae ST258 clinical isolate.

Methods

MICs were determined by the agar dilution method. WGS was conducted to identify and compare resistance genes between isolates. Expression of KPC-2 was quantified by quantitative RT–PCR and immunoblotting. OXA-2 was expressed in Escherichia coli TOP10, as well as in K. pneumoniae ATCC 13883, to define the relative contribution of OXA-2 in β-lactam resistance. Kinetic studies were conducted using purified OXA-2 enzyme.

Results

K. pneumoniae 1761 belonged to ST258 and carried both blaKPC-2 and blaOXA-2. However, expression of blaKPC-2 was substantially reduced due to an IS1294insertion in the promoter region. K. pneumoniae 1761, K. pneumoniae ATCC 13883 and E. coli TOP10 carrying blaOXA-2-harbouring plasmids showed reduced susceptibility to ertapenem and ceftazidime, but meropenem, imipenem and cefepime were unaffected. blaOXA-2 was carried on a 2910 bp partial class 1 integron containing aacA4-blaOXA-2-qacEΔ1-sul1 on an IncA/C2plasmid, which was not present in the earlier ST258 isolates possessing blaKPC-2 with intact promoters. Hydrolysis of ertapenem by OXA-2 was confirmed using purified enzyme.

Conclusions

Production of OXA-2 was associated with reduced ceftazidime and ertapenem susceptibility in a K. pneumoniae ST258 isolate.

Issue Section: ORIGINAL RESEARCH

© The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Keywords: Antibiotics; Drugs Resistance; Beta-lactams; Carbapenem; Ceftazidime; Ertapenem; Meropenem; Imipenem; Cefepime.

——