#Plasmid-mediated #quinolone #resistance: Mechanisms, detection, and #epidemiology in the #Arab countries (Infect Genet Evol., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Infect Genet Evol. 2019 Sep 4:104020. doi: 10.1016/j.meegid.2019.104020. [Epub ahead of print]

Plasmid-mediated quinolone resistance: Mechanisms, detection, and epidemiology in the Arab countries.

Yassine I1, Rafei R2, Osman M2, Mallat H2, Dabboussi F2, Hamze M1.

Author information: 1 Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon. Electronic address: mhamze@monzerhamze.com. 2 Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.

 

Abstract

Quinolones are an important antimicrobial class used widely in the treatment of enterobacterial infections. Although there are multiple mechanisms of quinolone resistance, attention should be paid to plasmid-mediated genes due to their ability to facilitate the spread of quinolone resistance, the selection of mutants with a higher-level of quinolone resistance, and the promotion of treatment failure. Since their discovery in 1998, plasmid-mediated quinolone resistance (PMQR) mechanisms have been reported more frequently worldwide especially with the extensive use of quinolones in humans and animals. Nevertheless, data from the Arab countries are rare and often scattered. Understanding the prevalence and distribution of PMQR is essential to stop the irrational use of quinolone in these countries. This manuscript describes the quinolone resistance mechanisms and particularly PMQR among Enterobacteriaceae as well as their methods of detection. Then the available data on the epidemiology of PMQR in clinical and environmental isolates from the Arab countries are extensively reviewed along with the other associated resistance genes. These data shows a wide dissemination of PMQR genes among Enterobacteriaceae isolates from humans, animals, and environments in these countries with increasing rates over the years and a common association with other antibiotic resistance genes as blaCTX-M-15. The incontrovertible emergence of PMQR in the Arab countries highlights the pressing need for effective stewardship efforts to prevent the selection of a higher rate of quinolone resistance and to preserve these crucial antibiotics.

Copyright © 2019. Published by Elsevier B.V.

KEYWORDS: Arab countries; Detection; Epidemiology; Molecular mechanisms; Plasmid-mediated quinolone resistance (PMQR); Quinolones

PMID: 31493557 DOI: 10.1016/j.meegid.2019.104020

Keywords: Antibiotics; Drugs Resistance; Quinolones; Enterobacteriaceae.

——

Advertisements

#Contact #precautions in single-bed or multiple-bed rooms for #patients with #ESBL-producing #Enterobacteriaceae in #Dutch #hospitals:… (Lancet Infect Dis., abstract)

[Source: The Lancet Infectious Diseases, full page: (LINK). Abstract, edited.]

Contact precautions in single-bed or multiple-bed rooms for patients with extended-spectrum β-lactamase-producing Enterobacteriaceae in Dutch hospitals: a cluster-randomised, crossover, non-inferiority study

Marjolein F Q Kluytmans-van den Bergh, PhD, Patricia C J Bruijning-Verhagen, PhD, Prof Christina M J E Vandenbroucke-Grauls, PhD, Els I G B de Brauwer, PhD, Anton G M Buiting, PhD, Bram M Diederen, PhD, Erika P M van Elzakker, MD, Prof Alex W Friedrich, PhD, Joost Hopman, MD, Nashwan al Naiemi, PhD, Prof John W A Rossen, PhD, Gijs J H M Ruijs, PhD, Prof Paul H M Savelkoul, PhD, Carlo Verhulst, BASc, Prof Margreet C Vos, PhD, Prof Andreas Voss, PhD, Prof Marc J M Bonten, PhD, Prof Jan A J W Kluytmans, PhD, on behalf of theSoM Study Group †

Published: August 23, 2019 / DOI: https://doi.org/10.1016/S1473-3099(19)30262-2

 

Summary

Background

Use of single-bed rooms for control of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is under debate; the added value when applying contact precautions has not been shown. We aimed to assess whether an isolation strategy of contact precautions in a multiple-bed room was non-inferior to a strategy of contact precautions in a single-bed room for preventing transmission of ESBL-producing Enterobacteriaceae.

Methods

We did a cluster-randomised, crossover, non-inferiority study on medical and surgical wards of 16 Dutch hospitals. During two consecutive study periods, either contact precautions in a single-bed room or contact precautions in a multiple-bed room were applied as the preferred isolation strategy for patients with ESBL-producing Enterobacteriaceae cultured from a routine clinical sample (index patients). Eligible index patients were aged 18 years or older, had no strict indication for barrier precautions in a single-bed room, had a culture result reported within 7 days of culture and before discharge, and had no wardmate known to be colonised or infected with an ESBL-producing Enterobacteriaceae isolate of the same bacterial species with a similar antibiogram. Hospitals were randomly assigned in a 1:1 ratio by computer to one of two sequences of isolation strategies, stratified by university or non-university hospital. Allocation was masked for laboratory technicians who assessed the outcomes but not for patients, treating doctors, and infection-control practitioners enrolling index patients. The primary outcome was transmission of ESBL-producing Enterobacteriaceae to wardmates, which was defined as rectal carriage of an ESBL-producing Enterobacteriaceae isolate that was clonally related to the index patient’s isolate in at least one wardmate. The primary analysis was done in the per-protocol population, which included patients who were adherent to the assigned room type. A 10% non-inferiority margin for the risk difference was used to assess non-inferiority. This study is registered with Nederlands Trialregister, NTR2799.

Findings

16 hospitals were randomised, eight to each sequence of isolation strategies. All hospitals randomised to the sequence single-bed room then multiple-bed room and five of eight hospitals randomised to the sequence multiple-bed room then single-bed room completed both study periods and were analysed. From April 24, 2011, to Feb 27, 2014, 1652 index patients and 12 875 wardmates were assessed for eligibility. Of those, 693 index patients and 9527 wardmates were enrolled and 463 index patients and 7093 wardmates were included in the per-protocol population. Transmission of ESBL-producing Enterobacteriaceae to at least one wardmate was identified for 11 (4%) of 275 index patients during the single-bed room strategy period and for 14 (7%) of 188 index patients during the multiple-bed room strategy period (crude risk difference 3·4%, 90% CI −0·3 to 7·1).

Interpretation

For patients with ESBL-producing Enterobacteriaceae cultured from a routine clinical sample, an isolation strategy of contact precautions in a multiple-bed room was non-inferior to a strategy of contact precautions in a single-bed room for preventing transmission of ESBL-producing Enterobacteriaceae. Non-inferiority of the multiple-bed room strategy might change the current single-bed room preference for isolation of patients with ESBL-producing Enterobacteriaceae and, thus, broaden infection-control options for ESBL-producing Enterobacteriaceae in daily clinical practice.

Funding

Netherlands Organisation for Health Research and Development.

Keywords: Antibiotics; Drugs Resistance; Beta-lactams; Enterobacteriaceae; Nosocomial outbreaks; Netherlands.

—–

Activity of #imipenem / #relebactam against #carbapenemase-producing #Enterobacteriaceae with high #colistin resistance (J Antimicrob Chemother., abstract)

[Source: Journal of Antimicrobial Chemotherapy, full page: (LINK). Abstract, edited.]

Activity of imipenem/relebactam against carbapenemase-producing Enterobacteriaceae with high colistin resistance

Jessica Carpenter, Nick Neidig, Alex Campbell, Tanner Thornsberry, Taylor Truex,Tiffany Fortney, Yunliang Zhang, Karen Bush

Journal of Antimicrobial Chemotherapy, dkz354, https://doi.org/10.1093/jac/dkz354

Published: 20 August 2019

 

Abstract

Objectives

Imipenem/relebactam, an investigational β-lactam/β-lactamase inhibitor combination for treatment of Gram-negative infections, and comparators including ceftazidime/avibactam, piperacillin/tazobactam and colistin were tested for activity against representative carbapenemase-producing Enterobacteriaceae (CPE) isolates.

Methods

MICs of the antimicrobial agents were determined using standard broth microdilution methodology for CPE isolates collected from Indiana patients, primarily during the time frame of 2013–17 (n = 199 of a total of 200 isolates). Inhibitors were tested at 4 mg/L in all combinations.

Results

Of the CPE in the study, 199 produced plasmid-encoded KPC class A carbapenemases; 1 Serratia marcescens isolate produced the SME-1 chromosomal class A carbapenemase. MIC50/MIC90 values of imipenem/relebactam were ≤0.25/0.5 mg/L, whereas MIC50/MIC90 values of ceftazidime/avibactam were 1/2 mg/L. Resistance to colistin was observed in 54% (n = 97) of 180 non-Serratia isolates tested (MIC50 of 4 mg/L). Colistin resistance mechanisms included production of a plasmid-encoded mcr-1-like gene (n = 2) or an inactivated mgrB gene.

Conclusions

Imipenem/relebactam was the most potent agent tested against CPE in this study and may be a useful addition to the antimicrobial armamentarium to treat infections caused by these pathogens.

Issue Section: ORIGINAL RESEARCH

© The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Keywords: Antibiotics; Drugs Resistance; Carbapenem; Colistin; MCR1; Enterobacteriaceae; Imipenem; Relebactam.

—–

Towards #endemicity: large-scale #expansion of the #NDM-1-producing #Klebsiella pneumoniae ST11 lineage in #Poland, 2015–16 (J Antimicrob Chemother., abstract)

[Source: Journal of Antimicrobial Chemotherapy, full page: (LINK). Abstract, edited.]

Towards endemicity: large-scale expansion of the NDM-1-producing Klebsiella pneumoniae ST11 lineage in Poland, 2015–16

A Baraniak, M Machulska, D Żabicka, E Literacka, R Izdebski, P Urbanowicz, K Bojarska,M Herda, A Kozińska, W Hryniewicz, M Gniadkowski, NDM-PL Study Group

Journal of Antimicrobial Chemotherapy, dkz315, https://doi.org/10.1093/jac/dkz315

Published: 13 August 2019

 

Abstract

Objectives

In 2015 and 2016 Poland recorded rapid proliferation of New Delhi MBL (NDM)-producing Enterobacterales, with at least 470 and 1780 cases, respectively. We addressed the roles of the Klebsiella pneumoniae ST11 NDM-1 outbreak genotype, already spreading in 2012–14, and of newly imported organisms in this increase.

Methods

The study included 2136 NDM-positive isolates identified between April 2015 and December 2016, following transfer of patients with K. pneumoniae ST147 NDM-1 from Tunisia to Warsaw in March 2015. The isolates were screened by PCR mapping for variants of blaNDM-carrying Tn125-like elements. Selected isolates were typed by PFGE and MLST. NDM-encoding plasmids were analysed by nuclease S1/hybridization, transfer assays, PCR-based replicon typing and PCR mapping.

Results

The organisms were mainly K. pneumoniae containing the Tn125A variant of the ST11 epidemic lineage (n = 2094; ∼98%). Their representatives were of the outbreak pulsotype and ST11, and produced NDM-1, encoded by specific IncFII (pKPX-1/pB-3002cz)-like plasmids. The isolates were recovered in 145 healthcare centres in 13/16 administrative regions, predominantly the Warsaw area. The ‘Tunisian’ genotype K. pneumoniae ST147 NDM-1 Tn125F comprised 18 isolates (0.8%) from eight institutions. The remaining 24 isolates, mostly K. pneumoniae and Escherichia coli of diverse STs, produced NDM-1 or NDM-5 specified by various Tn125 derivatives and plasmids.

Conclusions

The K. pneumoniae ST11 NDM-1 outbreak has dramatically expanded in Poland since 2012, which may bring about a countrywide endemic situation in the near future. In addition, the so-far limited K. pneumoniae ST147 NDM-1 outbreak plus multiple NDM imports from different countries were observed in 2015–16.

Issue Section: ORIGINAL RESEARCH

© The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Keywords: Antibiotics; Drugs Resistance; Beta-lactams; NDM1; NDM5; Poland.

——

#Shock and Early #Death in #Hematologic Patients with Febrile #Neutropenia (Antimicrob Agents Chemother., abstract)

[Source: Antimicrobial Agents and Chemotherapy, full page: (LINK). Abstract, edited.]

Shock and Early Death in Hematologic Patients with Febrile Neutropenia

Mariana Guarana, Marcio Nucci, Simone A. Nouér

DOI: 10.1128/AAC.01250-19

 

ABSTRACT

Empiric antibiotic therapy with a betalactam is standard of care in febrile neutropenia (FN), and is given to prevent early death. The addition of vancomycin is recommended in certain circumstances but the quality of evidence is low, reflecting the lack of clinical data. In order to characterize the epidemiology of early death and shock in FN, we reviewed all episodes of FN from 2003 to 2017 at University Hospital, Federal University of Rio de Janeiro, and looked at factors associated with shock at first fever and early death (within 3 days from first fever) by univariate and multivariate analyses. Among 1305 episodes of FN, shock occurred in 42 episodes (3.2%) and early death in 15 (1.1%). Predictors of shock were bacteremia due to Escherichia coli (odds ratio [OR] 8.47, 95% confidence interval [95% CI] 4.08 – 17.55, p<0.001), Enterobacter sp. (OR 7.53, 95% CI 1.60 – 35.33, p=0.01), and Acinetobacter sp. (OR 6.95, 95% CI 1.49 – 32.36, p=0.01). Factors associated with early death were non-Hodgkin lymphoma (OR 3.57, 95% CI 1.18-10.73, p=0.02), pneumonia (OR 21.36, 95% CI 5.72-79.72, p<0.001), shock (OR 11.64, 95% CI 2.77-48.86, p=0.01) and bacteremia due to Klebsiella pneumoniae (OR 5.91, 95% CI 1.11-31.47, p=0.03). Adequate empiric antibiotic therapy was protective (OR 0.23, 95% CI 0.07 – 0.81, p=0.02). Shock or early death was not associated with Gram-positive bacteremia, catheter-related, skin or soft tissue infection, or inadequate Gram-positive coverage. These data challenge guidelines recommendations for the empiric use of vancomycin at first fever in neutropenic patients.

Copyright © 2019 American Society for Microbiology. All Rights Reserved.

Keywords: Antibiotics; Vancomycin; Sepsis; Bacteremia; Enterobacteriaceae.

——

Molecular #Epidemiology of #Ceftriaxone Non-Susceptible #Enterobacterales Isolates in an Academic #Medical Center in the #USA (Open Forum Infect Dis., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Open Forum Infect Dis. 2019 Aug 11. pii: ofz353. doi: 10.1093/ofid/ofz353. [Epub ahead of print]

Molecular Epidemiology of Ceftriaxone Non-Susceptible Enterobacterales Isolates in an Academic Medical Center in the United States.

Tamma PD1, Shahara SL1, Pana ZD2, Amoah J3, Fisher SL4, Tekle T4, Doi Y5, Simner PJ1.

Author information: 1 Johns Hopkins University School of Medicine Baltimore, MD, USA. 2 European University of Cyprus Nicosia, Cyprus. 3 Johns Hopkins University School of Medicine Baltimore, Maryland, USA. 4 Johns Hopkins Hospital Baltimore, Maryland, USA. 5 University of Pittsburgh Pittsburgh, Pennsylvania, USA.

 

Abstract

BACKGROUND:

Knowledge of whether Enterobacterales are not susceptible to ceftriaxone without understanding the underlying resistance mechanisms may not be sufficient to direct appropriate treatment decisions. As an example, extended-spectrum β-lactamase (ESBL)-producing organisms almost uniformly display non-susceptibility to ceftriaxone. Regardless of susceptibility to piperacillin-tazobactam or cefepime, carbapenem antibiotics are the treatment of choice for invasive infections. No such guidance exists for ceftriaxone non-susceptible organisms with mechanisms other than ESBL production. We sought to investigate the molecular epidemiology of ceftriaxone non-susceptible Enterobacterales.

METHODS:

All consecutive Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, or Proteus mirabilis clinical isolates with ceftriaxone MICs of ≥2 mcg/mL from unique patients at a United States hospital over an 8-month period were evaluated for β-lactamase genes using a DNA microarray-based assay.

RESULTS:

Of 1929 isolates, 482 (25%) had ceftriaxone MICs of ≥2 mcg/mL and were not resistant to any carbapenem antibiotics. Of the 482 isolates, ESBL (blaCTX-M, blaSHV, blaTEM) and/or plasmid-mediated ampC (p-ampC) genes were identified in 376 (78%). ESBL genes were identified in 310 (82.4%), p-ampC genes in 2 (0.5%), and both ESBL and p-ampC genes in 64 (17.0%) of the 376 organisms. There were 211 (56%), 120 (32%), 41 (11%), and 4 (1%) isolates with 1, 2, 3, or 4 or more ESBL or p-ampC genes. The most common ESBL genes were of the blaCTX-M-1 group (includes blaCTX-M-15) and the most common p-ampC gene was the blaCMY-2.

CONCLUSIONS:

There is considerable diversity in the molecular epidemiology of ceftriaxone non-susceptible Enterobacterales. An understanding of this diversity can improve antibiotic decision-making.

© The Author(s) 2019. Published by Oxford University Press on behalf of Infectious Diseases Society of America.

KEYWORDS: Enterobacteriaceae ; Check-Points; ESBL; ampC beta-lactamase; antimicrobial resistance; extended-spectrum beta-lactamase

PMID: 31401649 DOI: 10.1093/ofid/ofz353

Keywords: Antibiotics; Drugs Resistance; Enterobacteriaceae; Ceftriaxone; USA.

——

#Urban brown #rats (Rattus norvegicus) as possible #source of #MDR #Enterobacteriaceae and #MRSA, Vienna, #Austria, 2016 and 2017 (Euro Surveill., abstract)

[Source: Eurosurveillance, full page: (LINK). Abstract, edited.]

Urban brown rats (Rattus norvegicus) as possible source of multidrug-resistant Enterobacteriaceae and meticillin-resistant Staphylococcus spp., Vienna, Austria, 2016 and 2017

Amélie Desvars-Larrive1, Werner Ruppitsch2, Sarah Lepuschitz2, Michael P Szostak1, Joachim Spergser1, Andrea T Feßler3, Stefan Schwarz3, Stefan Monecke4,5,6, Ralf Ehricht4,6, Chris Walzer1,7, Igor Loncaric1

Affiliations: 1 University of Veterinary Medicine, Vienna, Austria; 2 Austrian Agency for Health and Food Safety, Vienna, Austria; 3 Freie Universität, Berlin, Germany; 4 Leibniz Institute of Photonic Technology (IPHT), Jena, Germany; 5 Technische Universität, Dresden, Germany; 6 InfectoGnostics Research Campus, Jena, Germany; 7 Wildlife Conservation Society, Bronx, New York, United States

Correspondence: Amélie Desvars-Larrive amelie.desvarsvetmeduni.ac.at

Citation style for this article: Desvars-Larrive Amélie, Ruppitsch Werner, Lepuschitz Sarah, Szostak Michael P, Spergser Joachim, Feßler Andrea T, Schwarz Stefan, Monecke Stefan, Ehricht Ralf, Walzer Chris, Loncaric Igor. Urban brown rats (Rattus norvegicus) as possible source of multidrug-resistant Enterobacteriaceae and meticillin-resistant Staphylococcus spp., Vienna, Austria, 2016 and 2017. Euro Surveill. 2019;24(32):pii=1900149. https://doi.org/10.2807/1560-7917.ES.2019.24.32.1900149

Received: 25 Feb 2019;   Accepted: 03 Jun 2019

 

Abstract

Background

Brown rats (Rattus norvegicus) are an important wildlife species in cities, where they live in close proximity to humans. However, few studies have investigated their role as reservoir of antimicrobial-resistant bacteria.

Aim

We intended to determine whether urban rats at two highly frequented sites in Vienna, Austria, carry extended-spectrum β-lactamase-producing Enterobacteriaceae, fluoroquinolone-resistant Enterobacteriaceae and meticillin-resistant (MR) Staphylococcus spp. (MRS).

Methods

We surveyed the presence of antimicrobial resistance in 62 urban brown rats captured in 2016 and 2017 in Vienna, Austria. Intestinal and nasopharyngeal samples were cultured on selective media. We characterised the isolates and their antimicrobial properties using microbiological and genetic methods including disk diffusion, microarray analysis, sequencing, and detection and characterisation of plasmids.

Results

Eight multidrug-resistant Escherichia coli and two extensively drug-resistant New Delhi metallo-β-lactamases-1 (NDM-1)-producing Enterobacter xiangfangensis ST114 (En. cloacae complex) were isolated from nine of 62 rats. Nine Enterobacteriaceae isolates harboured the blaCTX-M gene and one carried a plasmid-encoded ampC gene (blaCMY-2). Forty-four MRS were isolated from 37 rats; they belonged to seven different staphylococcal species: S. fleurettii, S. sciuri, S. aureus, S. pseudintermedius, S. epidermidis, S. haemolyticus (all mecA-positive) and mecC-positive S. xylosus.

Conclusion

Our findings suggest that brown rats in cities are a potential source of multidrug-resistant bacteria, including carbapenem-resistant En. xiangfangensis ST114. Considering the increasing worldwide urbanisation, rodent control remains an important priority for health in modern cities.

© This work is licensed under a Creative Commons Attribution 4.0 International License.

Keywords: Antibiotics; Drugs Resistance; MRSA; Enterobacteriaceae; Wildlife; Austria.

——-