#Antibiotics #resistance and #toxin profiles of #Bacillus cereus-group isolates from fresh #vegetables from #German retail #markets (BMC Microbiol., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

BMC Microbiol. 2019 Nov 9;19(1):250. doi: 10.1186/s12866-019-1632-2.

Antibiotics resistance and toxin profiles of Bacillus cereus-group isolates from fresh vegetables from German retail markets.

Fiedler G1, Schneider C2, Igbinosa EO3,4, Kabisch J3, Brinks E3, Becker B2, Stoll DA2, Cho GS3, Huch M2, Franz CMAP3.

Author information: 1 Department of Microbiology and Biotechnology, Hermann-Weigmann-Straße 1, 24103, Kiel, Germany. gregor.fiedler@mri.bund.de. 2 Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany. 3 Department of Microbiology and Biotechnology, Hermann-Weigmann-Straße 1, 24103, Kiel, Germany. 4 Present Address: Department of Microbiology, Faculty of Life Sciences, University of Benin, Private Mail Bag 1154, Benin City, 30001, Nigeria.

 

Abstract

BACKGROUND:

This study aimed to evaluate the safety of raw vegetable products present on the German market regarding toxin-producing Bacillus cereus sensu lato (s.l.) group bacteria.

RESULTS:

A total of 147 B. cereus s.l. group strains isolated from cucumbers, carrots, herbs, salad leaves and ready-to-eat mixed salad leaves were analyzed. Their toxinogenic potential was assessed by multiplex PCR targeting the hemolysin BL (hbl) component D (hblD), non-hemolytic enterotoxin (nhe) component A (nheA), cytotoxin K-2 (cytK-2) and the cereulide (ces) toxin genes. In addition, a serological test was used to detect Hbl and Nhe toxins. On the basis of PCR and serological results, none of the strains were positive for the cereulide protein/genes, while 91.2, 83.0 and 37.4% were positive for the Hbl, Nhe and CytK toxins or their genes, respectively. Numerous strains produced multiple toxins. Generally, strains showed resistance against the β-lactam antibiotics such as penicillin G and cefotaxim (100%), as well as amoxicillin/clavulanic acid combination and ampicillin (99.3%). Most strains were susceptible to ciprofloxacin (99.3%), chloramphenicol (98.6%), amikacin (98.0%), imipenem (93.9%), erythromycin (91.8%), gentamicin (88.4%), tetracycline (76.2%) and trimethoprim/sulfamethoxazole combination (52.4%). The genomes of eight selected strains were sequenced. The toxin gene profiles detected by PCR and serological test mostly agreed with those from whole-genome sequence data.

CONCLUSIONS:

Our study showed that B. cereus s.l. strains encoding toxin genes occur in products sold on the German market and that these may pose a health risk to the consumer if present at elevated levels. Furthermore, a small percentage of these strains harbor antibiotic resistance genes. The presence of these bacteria in fresh produce should, therefore, be monitored to guarantee their safety.

KEYWORDS: Antibiotic resistance; Bacillus cereus sensu lato; Food safety; Fresh produce; Toxins; Whole genome sequencing

PMID: 31706266 DOI: 10.1186/s12866-019-1632-2

Keywords: Antibiotics; Drugs Resistance; Bacillus cereus; Food Safety; Germany; Amoxicillin; Cefotaxim; Ampicillin.

—–

#Human carriage of #cefotaxime-resistant #Escherichia coli in North-East #India: an analysis of STs and associated resistance mechanisms (J Antimicrob Chemother., abstract)

[Source: Journal of Antimicrobial Chemotherapy, full page: (LINK). Abstract, edited.]

Human carriage of cefotaxime-resistant Escherichia coli in North-East India: an analysis of STs and associated resistance mechanisms

Deepjyoti Paul, Dmitriy Babenko, Mark A Toleman

Journal of Antimicrobial Chemotherapy, dkz416, https://doi.org/10.1093/jac/dkz416

Published: 17 October 2019

 

Abstract

Objectives

To determine the prevalence of Escherichia coli STs and associated resistance mechanisms carried by the community in North-East India.

Methods

E. coli (108) were isolated from sewage collected from 19 sites across the city of Silchar by plating on MacConkey agar with/without selection (50 mg/L cefotaxime). Species identification was confirmed by MALDI-TOF MS for 82 isolates. Common resistance mechanisms were determined by WGS of pooled E. coli isolates. PFGE combined with specific probes determined the presence of common resistance mechanisms in all isolates. Phylotypes, multilocus STs, core-genome multilocus STs, resistance genes and virulence genes were determined by in silico analysis of 38 genomes.

Results and conclusions

Analysis of isolates collected without selection (n = 33) indicated that cefotaxime resistance in E. coli was 42% (14/33) and estimated meropenem resistance at 9%. The remaining 58% (19/33) were additionally susceptible to ampicillin, trimethoprim, ciprofloxacin and aminoglycosides. The most common ST among the cefotaxime-resistant E. coli was ST167 (29%), followed by ST410 (17%) and ST648 (10%). E. coli ST131 was absent from the collection. Sixty-three isolates were resistant to cefotaxime and harboured blaCTX-M-15 [54% (34/63)] or blaCMY-42 [46% (29/63)], of which 10% (6/63) harboured both genes. Carbapenem resistance was due to blaNDM-5, found in 10/63 cefotaxime-resistant isolates, and/or blaOXA-181, found in 4/63 isolates. NDM-5 was encoded by IncX3 and/or IncFII plasmids and CMY-42 was mostly encoded by IncI plasmids. NDM-5 appears to have replaced NDM-1 in this region and CMY-42 appears to be in the process of replacing CTX-M-15.

Keywords: Antibiotics; Drugs Resistance; Cefotaxime; E. Coli; NDM1; NDM5; India.

——

Characterization of #cefotaxime #resistant #urinary #Escherichia coli from primary care in South-West #England 2017–18 (J Antimicrob Chemother., abstract)

[Source: Journal of Antimicrobial Chemotherapy, full page: (LINK). Abstract, edited.]

Characterization of cefotaxime-resistant urinary Escherichia coli from primary care in South-West England 2017–18

Jacqueline Findlay, Virginia C Gould, Paul North, Karen E Bowker, Martin O Williams, Alasdair P MacGowan, Matthew B Avison

Journal of Antimicrobial Chemotherapy, dkz397, https://doi.org/10.1093/jac/dkz397

Published: 20 September 2019

 

Abstract

Objectives

Third-generation cephalosporin-resistant Escherichia coli from community-acquired urinary tract infections are increasingly reported worldwide. We sought to determine and characterize the mechanisms of cefotaxime resistance employed by urinary E. coli obtained from primary care, over 12 months, in Bristol and surrounding counties in South-West England.

Methods

Cefalexin-resistant E. coli isolates were identified from GP-referred urine samples using disc susceptibility testing. Cefotaxime resistance was determined by subsequent plating onto MIC breakpoint plates. β-Lactamase genes were detected by PCR. WGS was performed on 225 isolates and analyses were performed using the Center for Genomic Epidemiology platform. Patient information provided by the referring general practices was reviewed.

Results

Cefalexin-resistant E. coli (n = 900) isolates were obtained from urines from 146 general practices. Following deduplication by patient approximately 69% (576/836) of isolates were cefotaxime resistant. WGS of 225 isolates identified that the most common cefotaxime-resistance mechanism was blaCTX-M carriage (185/225), followed by plasmid-mediated AmpCs (pAmpCs) (17/225), AmpC hyperproduction (13/225), ESBL blaSHV variants (6/225) or a combination of both blaCTX-M and pAmpC (4/225). Forty-four STs were identified, with ST131 representing 101/225 isolates, within which clade C2 was dominant (54/101). Ciprofloxacin resistance was observed in 128/225 (56.9%) of sequenced isolates, predominantly associated with fluoroquinolone-resistant clones ST131 and ST1193.

Conclusions

Most cefalexin-resistant E. coli isolates were cefotaxime resistant, predominantly caused by blaCTX-M carriage. The correlation between cefotaxime resistance and ciprofloxacin resistance was largely attributable to the high-risk pandemic clones ST131 and ST1193. Localized epidemiological data provide greater resolution than regional data and can be valuable for informing treatment choices in the primary care setting.

Issue Section: ORIGINAL RESEARCH

© The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Keywords: Antibiotics; Drugs Resistance; Cephalosporins; Fluoroquinolones; E. Coli; UTI; Cefalexin; Cefotaxime; UK; England.

——

Emergence and dominance of #E coli ST131 CTX-M-27 in a community #paediatric cohort study: independent host factors and #bacterial genetic determinants (Antimicrob Agents Chemother., abstract)

[Source: Antimicrobial Agents and Chemotherapy, full page: (LINK). Abstract, edited.]

Emergence and dominance of E. coli ST131 CTX-M-27 in a community paediatric cohort study: independent host factors and bacterial genetic determinants

André Birgy, Corinne Levy, Marie-Hélène Nicolas-Chanoine, Aurélie Cointe, Claire A. Hobson, Mélanie Magnan, Stéphane Bechet, Philippe Bidet, Robert Cohen, Stéphane Bonacorsi

DOI: 10.1128/AAC.00382-19

 

ABSTRACT

The recent emergence and diffusion in the community of Escherichia coli isolates belonging to the multidrug-resistant and CTX-M-27-producing ST131 C1-M27 cluster, makes this cluster potentially as epidemic as the worldwide E coli ST131 subclade C2 composed of multidrug resistant isolates producing CTX-M-15. Thirty-five extended-spectrum beta-lactamase (ESBL) producing ST131 isolates were identified in a cohort of 1,885 French children over a 5 year-period. They were sequenced to characterize the ST131 E. coli isolates producing CTX-M-27 recently emerging in France. ST131 isolates producing CTX-M-27 (n=17), and particularly those belonging to the C1-M27 cluster (n=14), carried many resistance-encoding genes and predominantly a F1:A2:B20 plasmid type. In multivariate analysis, having been hospitalized since birth (OR=10.9; 95%CI=2.4;48.8; p=0.002) and being cared for in a day-care center (OR=9.4;95%; CI=1.5;59.0; p=0.017) were independent risk factors for ST131 CTX-M-27 fecal carriage compared with ESBL-producing non-ST131 isolates. No independent risk factor was found when comparing CTX-M-15 (n=11) and CTX-M-1/14 (n=7)-producing ST131 isolates with ESBL-producing non-ST131 isolates or with non-ESBL-producing isolates. Several factors may contribute to the increase in fecal carriage of CTX-M-27-producing E. coli isolates: resistance to multiple antibiotics, capacity of the CTX-M-27 enzyme to hydrolyze both cefotaxime and ceftazidime, carriage of a peculiar F-type plasmid, and/or capacity to colonize children who have been hospitalized since birth or who attend day-care centers.

Copyright © 2019 American Society for Microbiology. All Rights Reserved.

Keywords: Antibiotics; Drugs Resistance; E. Coli; Pediatrics; Cefotaxime; Ceftazidime.

——-

The first #isolation of #Clostridium difficile RT078/ST11 from #pigs in #China (PLoS One, abstract)

[Source: PLoS One, full page: (LINK). Abstract, edited.]

OPEN ACCESS /  PEER-REVIEWED / RESEARCH ARTICLE

The first isolation of Clostridium difficile RT078/ST11 from pigs in China

Li-Juan Zhang, Ling Yang, Xi-Xi Gu, Pin-Xian Chen, Jia-Li Fu, Hong-Xia Jiang

Published: February 26, 2019 / DOI: https://doi.org/10.1371/journal.pone.0212965

 

Abstract

We investigated the molecular characteristics and antimicrobial susceptibility of Clostridium difficile isolated from animals in China. We obtained 538 rectal swabs from pigs, chickens and ducks in 5 provinces during 2015 and 2016. C. difficile isolates were characterized by detection of toxin genes, multilocus sequence typing and ribotyping. And antimicrobial susceptibility testing was performed using the agar dilution method. Out of 538 samples, 44 (8.2%) were C. difficile positive with high prevalence in pigs (n = 31). Among these, 39 (88.6%) were toxigenic including 14 (31.8%) that were A+B+CDT+ and 13 (29.5%) A+B+. The remaining 12 (27.3%) were A-B+. We identified 7 ST types and 6 PCR ribotypes. The most predominant type was ST11/RT078 with toxin profile A+B+CDT+ and all were isolated from piglets with diarrhea. ST109 isolates possessed two different toxigenic profiles (A-B-CDT- and A-B+CDT-) and although it was not the most prevalent sequence type, but it was widely distributed between chickens, ducks and pigs in the 5 provinces. All C. difficile isolates were fully susceptible to vancomycin, metronidazole, fidaxomicin, amoxicillin/clavulanate and meropenem but retained resistance to 4 or 5 of the remaining antibiotics, especially cefotaxime, tetracycline, ciprofloxacin, cefoxitin. The RT078/ST11 isolates were simultaneously resistant to cefotaxime, tetracycline, cefoxitin, ciprofloxacin and imipenem. This is the first report of the molecular epidemiology of C. difficile isolated from food animals in China. We identified the epidemic strain RT078/ST11 as the predominate isolate among the animals we screened in our study.

___

Citation: Zhang L-J, Yang L, Gu X-X, Chen P-X, Fu J-L, Jiang H-X (2019) The first isolation of Clostridium difficile RT078/ST11 from pigs in China. PLoS ONE 14(2): e0212965. https://doi.org/10.1371/journal.pone.0212965

Editor: Pradeep Dudeja, University of Illinois at Chicago, UNITED STATES

Received: November 2, 2018; Accepted: February 12, 2019; Published: February 26, 2019

Copyright: © 2019 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: All relevant data are within the paper.

Funding: This work was supported by the National Natural Science Foundation of China (31272602) (H-XJ) and Graduate Student Oversea Study Program of South China Agriculture University (2017LHPY029) (LY). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Keywords: Antibiotics; Drugs Resistance; Clostridium difficile; Pigs; China.

—–

#WGS #analysis of #MDR #serotype 15A #Streptococcus pneumoniae in #Japan and the emergence of a highly resistant serotype 15A-ST9084 clone (Antimicrob Agents Chemother., abstract)

[Source: Antimicrobial Agents and Chemotherapy, full page: (LINK). Abstract, edited.]

Whole-genome sequencing analysis of multidrug-resistant serotype 15A Streptococcus pneumoniae in Japan and the emergence of a highly resistant serotype 15A-ST9084 clone

Satoshi Nakano, Takao Fujisawa, Yutaka Ito, Bin Chang, Yasufumi Matsumura, Masaki Yamamoto, Shigeru Suga, Makoto Ohnishi, Miki Nagao

DOI: 10.1128/AAC.02579-18

 

ABSTRACT

Since the introduction of pneumococcal conjugate vaccines, an increase in the incidence of disease attributable to serotype 15A-ST63 pneumococci has been observed in many regions worldwide. We conducted a nationwide pediatric pneumococcal infection surveillance study between 2012 and 2014 in Japan. In the surveillance study, we detected multidrug-resistant serotype 15A-CC63 strains (resistant to macrolides, penicillin, cefotaxime and meropenem); in this study, we analyzed these resistant isolates to determine the dynamics and mechanism of resistance using whole-genome sequencing. In most of the penicillin-, cefotaxime- and meropenem-resistant strains, recombination occurred in the pbp2x region resulting in the acquisition of additional cefotaxime resistance to penicillin and meropenem. In the multidrug-resistant serotype 15A-CC63 strains, we identified a specific clone with ST9084, and all of the isolates were recovered from Yamaguchi prefecture in Japan. All of the serotype 15A-ST9084 isolates had a novel pbp2x-43 that was inserted by recombination events. The conserved amino acid motif profiles of pbp1a, pbp2b and pbp2x of the strains were identical to those in serotype 19A-ST320. A Bayesian analysis-based date estimation suggested that this clone emerged in approximately 2002 before the introduction of PCV in Japan. This clone should be monitored because serotype 15A is not contained in the currently used PCV13 and it was resistance to beta-lactams, which are often use in a clinical setting.

Copyright © 2019 American Society for Microbiology. All Rights Reserved.

Keywords: Antibiotics; Drugs Resistance; Beta-lactams; Penicillin; Cefotaxime; Meropenem; S. pneumoniae; Japan.

—–

#Identification and #Characterization of #Cefotaxime Resistant #Bacteria in #Beef #Cattle (PLoS One, abstract)

[Source: PLoS One, full page: (LINK). Abstract, edited.]

OPEN ACCESS / PEER-REVIEWED / RESEARCH ARTICLE

Identification and Characterization of Cefotaxime Resistant Bacteria in Beef Cattle

Raies A. Mir, Thomas A. Weppelmann, Judith A. Johnson, Douglas Archer, J. Glenn Morris Jr, KwangCheol Casey Jeong

Published: September 19, 2016 / http://dx.doi.org/10.1371/journal.pone.0163279

 

Abstract

Third-generation cephalosporins are an important class of antibiotics that are widely used in treatment of serious Gram-negative bacterial infections. In this study, we report the isolation of bacteria resistant to the third-generation cephalosporin cefotaxime from cattle with no previous cefotaxime antibiotic exposure. The prevalence of cefotaxime-resistant bacteria was examined by a combination of culture based and molecular typing methods in beef cattle (n = 1341) from 8 herds located in North Central Florida. The overall prevalence of cefotaxime-resistant bacteria was 15.8% (95% CI: 13.9, 17.8), varied between farms, and ranged from 5.2% to 100%. A subset of isolates (n = 23) was further characterized for the cefotaxime minimum inhibitory concentration (MIC) and antibiotic susceptibility against 10 different antibiotics, sequencing of nine β- lactamase genes, and species identification by 16S rRNA sequencing. Most of the bacterial isolates were resistant to cefotaxime (concentrations, > 64 μg/mL) and showed high levels of multi-drug resistance. Full length 16S rRNA sequences (~1300 bp) revealed that most of the isolates were not primary human or animal pathogens; rather were more typical of commensal, soil, or other environmental origin. Six extended spectrum β-lactamase (ESBL) genes identical to those in clinical human isolates were identified. Our study highlights the potential for carriage of cefotaxime resistance (including “human” ESBL genes) by the bacterial flora of food animals with no history of cefotaxime antibiotic exposure. A better understanding of the origin and transmission of resistance genes in these pre-harvest settings will be critical to development of strategies to prevent the spread of antimicrobial resistant microorganisms to hospitals and communities.

_____

Citation: Mir RA, Weppelmann TA, Johnson JA, Archer D, Morris JG Jr, Jeong KC (2016) Identification and Characterization of Cefotaxime Resistant Bacteria in Beef Cattle. PLoS ONE 11(9): e0163279. doi:10.1371/journal.pone.0163279

Editor: Yung-Fu Chang, Cornell University, UNITED STATES

Received: April 11, 2016; Accepted: September 5, 2016; Published: September 19, 2016

Copyright: © 2016 Mir et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: All relevant data are within the paper.

Funding: This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under the award number 2015-68003-22971 to KCJ. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Keywords: Research; Abstracts; Antibiotics; Drugs Resistance; Cefotaxime; Cattle; Food Safety.

—–