Available #evidence of #antibiotic #resistance from #ESBL-producing #Enterobacteriaceae in #paediatric patients in 20 countries: a systematic review and meta-analysis (Bull World Health Organ., abstract)

[Source: Bulletin of the World Health Organization, full page: (LINK). Abstract, edited.]

Available evidence of antibiotic resistance from extended-spectrum β-lactamase-producing Enterobacteriaceae in paediatric patients in 20 countries: a systematic review and meta-analysis

Yanhong Jessika Hu,a, Anju Ogyu,a, Benjamin J Cowling,a, Keiji Fukuda a & Herbert H Pang a

{a} School of Public Health, Patrick Manson Building (North Wing), 7 Sassoon Road, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special
Administrative Region, China.

Correspondence to Yanhong Jessika Hu (email: huhubest@gmail.com).

Submitted: 20 October 2018 – Revised version received: 8 April 2019 – Accepted: 9 April 2019 – Published online: 14 May 2019

Bull World Health Organ 2019;97:486–501B | doi: http://dx.doi.org/10.2471/BLT.18.225698

 

Abstract

Objective

To make a systematic review of risk factors, outcomes and prevalence of extended-spectrum β-lactamase-associated infection in children and young adults in South-East Asia and the Western Pacific.

Methods

Up to June 2018 we searched online databases for published studies of infection with extended-spectrum β-lactamase-producing Enterobacteriaceae in individuals aged 0–21 years. We included case–control, cohort, cross-sectional and observational studies reporting patients positive and negative for these organisms. For the meta-analysis we used random-effects modelling of risk factors and outcomes for infection, and meta-regression for analysis of subgroups. We mapped the prevalence of these infections in 20 countries and areas using available surveillance data.

Findings

Of 6665 articles scanned, we included 40 studies from 11 countries and areas in the meta-analysis. The pooled studies included 2411 samples testing positive and 2874 negative. A higher risk of infectionwith extended-spectrum β-lactamase-producing bacteria was associated with previous hospital care, notably intensive care unit stays (pooled odds ratio, OR: 6.5; 95% confidence interval, CI: 3.04 to 13.73); antibiotic exposure (OR: 4.8; 95% CI: 2.25 to 10.27); and certain co-existing conditions. Empirical antibiotic therapy was protective against infection (OR: 0.29; 95% CI: 0.11 to 0.79). Infected patients had longer hospital stays (26 days; 95% CI: 12.81 to 38.89) and higher risk of death (OR: 3.2; 95% CI: 1.82 to 5.80). The population prevalence of infection was high in these regions and surveillance data for children were scarce.

Conclusion

Antibiotic stewardship policies to prevent infection and encourage appropriate treatment are needed in South-East Asia and the Western Pacific

Keywords: Antibiotics; Drugs Resistance; Pediatrics; Asia Region.

——

Advertisements

Causes of severe #pneumonia requiring #hospital admission in #children without HIV infection from #Africa and #Asia: the #PERCH multi-country case-control study (Lancet, abstract)

[Source: The Lancet, full page: (LINK). Abstract, edited.]

Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study

The Pneumonia Etiology Research for Child Health (PERCH) Study Group †

Open Access / Published: June 27, 2019 / DOI: https://doi.org/10.1016/S0140-6736(19)30721-4

 

Summary

Background

Pneumonia is the leading cause of death among children younger than 5 years. In this study, we estimated causes of pneumonia in young African and Asian children, using novel analytical methods applied to clinical and microbiological findings.

Methods

We did a multi-site, international case-control study in nine study sites in seven countries: Bangladesh, The Gambia, Kenya, Mali, South Africa, Thailand, and Zambia. All sites enrolled in the study for 24 months. Cases were children aged 1–59 months admitted to hospital with severe pneumonia. Controls were age-group-matched children randomly selected from communities surrounding study sites. Nasopharyngeal and oropharyngeal (NP-OP), urine, blood, induced sputum, lung aspirate, pleural fluid, and gastric aspirates were tested with cultures, multiplex PCR, or both. Primary analyses were restricted to cases without HIV infection and with abnormal chest x-rays and to controls without HIV infection. We applied a Bayesian, partial latent class analysis to estimate probabilities of aetiological agents at the individual and population level, incorporating case and control data.

Findings

Between Aug 15, 2011, and Jan 30, 2014, we enrolled 4232 cases and 5119 community controls. The primary analysis group was comprised of 1769 (41·8% of 4232) cases without HIV infection and with positive chest x-rays and 5102 (99·7% of 5119) community controls without HIV infection. Wheezing was present in 555 (31·7%) of 1752 cases (range by site 10·6–97·3%). 30-day case-fatality ratio was 6·4% (114 of 1769 cases). Blood cultures were positive in 56 (3·2%) of 1749 cases, and Streptococcus pneumoniae was the most common bacteria isolated (19 [33·9%] of 56). Almost all cases (98·9%) and controls (98·0%) had at least one pathogen detected by PCR in the NP-OP specimen. The detection of respiratory syncytial virus (RSV), parainfluenza virus, human metapneumovirus, influenza virus, S pneumoniae, Haemophilus influenzae type b (Hib), H influenzae non-type b, and Pneumocystis jirovecii in NP-OP specimens was associated with case status. The aetiology analysis estimated that viruses accounted for 61·4% (95% credible interval [CrI] 57·3–65·6) of causes, whereas bacteria accounted for 27·3% (23·3–31·6) and Mycobacterium tuberculosis for 5·9% (3·9–8·3). Viruses were less common (54·5%, 95% CrI 47·4–61·5 vs 68·0%, 62·7–72·7) and bacteria more common (33·7%, 27·2–40·8 vs 22·8%, 18·3–27·6) in very severe pneumonia cases than in severe cases. RSV had the greatest aetiological fraction (31·1%, 95% CrI 28·4–34·2) of all pathogens. Human rhinovirus, human metapneumovirus A or B, human parainfluenza virus, S pneumoniae, M tuberculosis, and H influenzae each accounted for 5% or more of the aetiological distribution. We observed differences in aetiological fraction by age for Bordetella pertussis, parainfluenza types 1 and 3, parechovirus–enterovirus, P jirovecii, RSV, rhinovirus, Staphylococcus aureus, and S pneumoniae, and differences by severity for RSV, S aureus, S pneumoniae, and parainfluenza type 3. The leading ten pathogens of each site accounted for 79% or more of the site’s aetiological fraction.

Interpretation

In our study, a small set of pathogens accounted for most cases of pneumonia requiring hospital admission. Preventing and treating a subset of pathogens could substantially affect childhood pneumonia outcomes.

Funding

Bill & Melinda Gates Foundation.

Keywords: Pneumonia; Pediatrics; Africa; Asia; Streptococcus pneumoniae; RSV; Metapneumovirus; Seasonal Influenza.

—–

One #hypervirulent #clone, sequence type 283, accounts for a large proportion of invasive #Streptococcus agalactiae isolated from #humans and diseased #tilapia in Southeast #Asia (PLoS Negl Trop Dis., abstract)

[Source: PLoS Neglected Tropical Diseases, full page: (LINK). Abstract, edited.]

OPEN ACCESS /  PEER-REVIEWED / RESEARCH ARTICLE

One hypervirulent clone, sequence type 283, accounts for a large proportion of invasive Streptococcus agalactiae isolated from humans and diseased tilapia in Southeast Asia

Timothy Barkham , Ruth N. Zadoks, Mohammad Noor Amal Azmai, Stephen Baker, Vu Thi Ngoc Bich, Victoria Chalker, Man Ling Chau, David Dance, Rama Narayana Deepak, H. Rogier van Doorn, Ramona A. Gutierrez, Mark A. Holmes, Lan Nguyen Phu Huong,  [ … ], Swaine L. Chen

Published: June 27, 2019 / DOI: https://doi.org/10.1371/journal.pntd.0007421

 

Abstract

Background

In 2015, Singapore had the first and only reported foodborne outbreak of invasive disease caused by the group B Streptococcus (GBS; Streptococcus agalactiae). Disease, predominantly septic arthritis and meningitis, was associated with sequence type (ST)283, acquired from eating raw farmed freshwater fish. Although GBS sepsis is well-described in neonates and older adults with co-morbidities, this outbreak affected non-pregnant and younger adults with fewer co-morbidities, suggesting greater virulence. Before 2015 ST283 had only been reported from twenty humans in Hong Kong and two in France, and from one fish in Thailand. We hypothesised that ST283 was causing region-wide infection in Southeast Asia.

Methodology/Principal findings

We performed a literature review, whole genome sequencing on 145 GBS isolates collected from six Southeast Asian countries, and phylogenetic analysis on 7,468 GBS sequences including 227 variants of ST283 from humans and animals. Although almost absent outside Asia, ST283 was found in all invasive Asian collections analysed, from 1995 to 2017. It accounted for 29/38 (76%) human isolates in Lao PDR, 102/139 (73%) in Thailand, 4/13 (31%) in Vietnam, and 167/739 (23%) in Singapore. ST283 and its variants were found in 62/62 (100%) tilapia from 14 outbreak sites in Malaysia and Vietnam, in seven fish species in Singapore markets, and a diseased frog in China.

Conclusions

GBS ST283 is widespread in Southeast Asia, where it accounts for a large proportion of bacteraemic GBS, and causes disease and economic loss in aquaculture. If human ST283 is fishborne, as in the Singapore outbreak, then GBS sepsis in Thailand and Lao PDR is predominantly a foodborne disease. However, whether transmission is from aquaculture to humans, or vice versa, or involves an unidentified reservoir remains unknown. Creation of cross-border collaborations in human and animal health are needed to complete the epidemiological picture.

 

Author summary

An outbreak due to a bacterium called Streptococccus agalactiae in Singapore in 2015 was caused by a clone called ST283, and was associated with consumption of raw freshwater-fish. It was considered unique as it was the only reported foodborne outbreak of this bacterium. Our new data show that invasive ST283 disease is far from unique. ST283 has been causing disease in humans and farmed fish in SE Asian countries for decades. Reports of ST283 are almost absent outside Asia. We suspect that human ST283 is fishborne in other Asian countries, as it was in Singapore, but we haven’t looked at this yet. We don’t know where ST283 originally came from; it may have been transmitted from humans to fish, or come from another animal. More studies are needed to determine ST283’s geographical extent and burden of disease, as well as its origin, how it is transmitted, and what enables it to be so aggressive. We may then be able to interrupt transmission, to the benefit of fish, farmers, and the general public.

___

Citation: Barkham T, Zadoks RN, Azmai MNA, Baker S, Bich VTN, Chalker V, et al. (2019) One hypervirulent clone, sequence type 283, accounts for a large proportion of invasive Streptococcus agalactiae isolated from humans and diseased tilapia in Southeast Asia. PLoS Negl Trop Dis 13(6): e0007421. https://doi.org/10.1371/journal.pntd.0007421

Editor: Alfredo G. Torres, University of Texas Medical Branch, UNITED STATES

Received: January 9, 2019; Accepted: April 29, 2019; Published: June 27, 2019

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Data Availability: All relevant data are within the manuscript and its Supporting Information files.

Funding: Support for this project was provided by the Molecular Biology Laboratory and the Department of Laboratory Medicine, Tan Tock Seng Hospital; by the Environmental Health Institute, National Environment Agency, Singapore; by the Ministry of Health, Singapore, through the Singapore Infectious Diseases Initiative grant number SIDI/2016/002 (TB) https://www.moh.gov.sg, and the National Medical Research Council, Ministry of Health, Singapore grant number NMRC/CIRG/1467/2017 (SLC) http://www.nmrc.gov.sg, by the UK Global Challenges Research Fund via the Scottish Funding Council, SFC/AN/10/2018 (RNZ) http://www.sfc.ac.uk, and by the Global Disease Detection program of the U.S. Centers for Disease Control and Prevention. The BSAC resistance surveillance project is acknowledged for the provision of the UK data. The Lao PDR GBS were obtained during the work of LOMWRU, funded by the Wellcome Trust. The funders had no role in study design, data collection and analysis, or preparation of the manuscript: the US CDC approved the decision to publish.

Competing interests: I have read the journal’s policy and the authors of this manuscript have the following competing interests: SLC and TB are named applicants on a patent for the ST83-specific PCR test used in this study.

Keywords: Streptococcus agalactiae; Food safety; Human; Asia Region.

——

Co-circulation of genetically distinct highly pathogenic #avian #influenza A clade 2.3.4.4 (#H5N6) viruses in wild #waterfowl and #poultry in #Europe and East #Asia, 2017-18 (Virus Evol., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Virus Evol. 2019 Apr 22;5(1):vez004. doi: 10.1093/ve/vez004. eCollection 2019 Jan.

Co-circulation of genetically distinct highly pathogenic avian influenza A clade 2.3.4.4 (H5N6) viruses in wild waterfowl and poultry in Europe and East Asia, 2017-18.

Poen MJ1, Venkatesh D2, Bestebroer TM1, Vuong O1, Scheuer RD1, Oude Munnink BB1, de Meulder D1, Richard M1, Kuiken T1, Koopmans MPG1, Kelder L3, Kim YJ4, Lee YJ4, Steensels M5, Lambrecht B5, Dan A6, Pohlmann A7, Beer M7, Savic V8, Brown IH9, Fouchier RAM1, Lewis NS9,10.

Author information: 1 Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands. 2 Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK. 3 Staatsbosbeheer, Amersfoort, the Netherlands. 4 Avian Influenza Research and Diagnostic Division, Animal and Plant Quarantine Agency, Republic of Korea. 5 Avian Virology and Immunology, Sciensano, Brussels, Belgium. 6 Veterinary Diagnostics Directorate, Budapest, Hungary. 7 Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany. 8 Croatian Veterinary Institute, Zagreb, Croatia. 9 OIE/FAO/EURL International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, Surrey, UK. 10 Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK.

 

Abstract

Highly pathogenic avian influenza (HPAI) H5 clade 2.3.4.4 viruses were first introduced into Europe in late 2014 and re-introduced in late 2016, following detections in Asia and Russia. In contrast to the 2014-15 H5N8 wave, there was substantial local virus amplification in wild birds in Europe in 2016-17 and associated wild bird mortality, with evidence for occasional gene exchange with low pathogenic avian influenza (LPAI) viruses. Since December 2017, several European countries have again reported events or outbreaks with HPAI H5N6 reassortant viruses in both wild birds and poultry, respectively. Previous phylogenetic studies have shown that the two earliest incursions of HPAI H5N8 viruses originated in Southeast Asia and subsequently spread to Europe. In contrast, this study indicates that recent HPAI H5N6 viruses evolved from the H5N8 2016-17 viruses during 2017 by reassortment of a European HPAI H5N8 virus and wild host reservoir LPAI viruses. The genetic and phenotypic differences between these outbreaks and the continuing detections of HPAI viruses in Europe are a cause of concern for both animal and human health. The current co-circulation of potentially zoonotic HPAI and LPAI virus strains in Asia warrants the determination of drivers responsible for the global spread of Asian lineage viruses and the potential threat they pose to public health.

KEYWORDS: H5N6; avian influenza; emerging diseases; highly pathogenic avian influenza; phylogeny; virology

PMID: 31024736 PMCID: PMC6476160 DOI: 10.1093/ve/vez004

Keywords: Avian Influenza; H5N6; H5N8; Reassortant Strain; Poultry; Wild Birds; European Region; Asia Region.

——

#Equine #influenza virus in #Asia: phylogeographic pattern and molecular features revealed the circulation of an autochthonous lineage (J Virol., abstract)

[Source: Journal of Virology, full page: (LINK). Abstract, edited.]

Equine influenza virus in Asia: phylogeographic pattern and molecular features revealed the circulation of an autochthonous lineage

Samuel Miño, Laura Mojsiejczuk, Wei Guo, Haili Zhang, Ting Qi, Cheng Du, Xiang Zhang, Jingfei Wang, Rodolfo Campos, Xiaojun Wang

DOI: 10.1128/JVI.00116-19

 

ABSTRACT

Equine influenza virus (EIV) causes severe acute respiratory disease in horses. Currently, the strains belonging to the H3N8 genotype are divided into two clades, Florida clade 1 (FC1) and Florida clade 2 (FC2) which emerged in 2002. Both FC1and FC2 clades were reported in Asian and Middle East countries in the last decade. In this study, we described the evolution, epidemiology and molecular characteristic of the EIV lineages, with focus on those detected in Asia from 2007 to 2017. The full genome phylogeny showed that FC1 and FC2 constituted separated and divergent lineages, without evidence of reassortment between the clades. While FC1 evolved as a single lineage, the FC2 showed a divergent event around 2004 giving rise to two well supported and coexisting sub-lineages, European and Asian. Furthermore, two different spread patterns of EIV in Asian countries were identified. The FC1 outbreaks were caused by independent introductions of EIV from the Americas, being the Asian isolates genetically similar to the contemporary American lineages. On the other hand, the FC2 strains detected in Asian mainland countries conformed an autochthonous monophyletic group with a common ancestor dated in 2006 and showed evidence of an endemic circulation in local host. Characteristic aminoacidic signature patterns were detected in all viral proteins in both Asian-FC1 and FC2 populations. Several changes were located at the top of the HA1 protein, inside or near to antigenic sites. Further studies are needed to assess the potential impact of these antigenic changes in vaccination programs.

 

IMPORTANCE

The complex and continuous antigenic evolution of EIVs remains a major hurdle for vaccine development and the design of effective immunization programs. The present study provides a comprehensive analysis showing the EIV evolutionary dynamics, including the spread and circulation within the Asian continent and its relationship to global EIV populations over a 10-year period. Moreover, we provide a better understanding of EIV molecular evolution in Asian countries and its consequences on the antigenicity. The study underscores the association between the global horse movement and the circulation of EIV in this region. Understanding EIV evolution is imperative in order to mitigate the risk of outbreaks affecting horse industry and to help with the selection of the viral strains to be included in the formulation of future vaccines.

Copyright © 2019 American Society for Microbiology. All Rights Reserved.

Keywords: Equine Influenza; Horses; Asia Region.

——

Acquisition and Loss of #CTX-M-Producing and Non-Producing #Escherichia coli in the Fecal #Microbiome of #Travelers to South #Asia (mBio, abstract)

[Source: mBio, full page: (LINK). Abstract, edited.]

Acquisition and Loss of CTX-M-Producing and Non-Producing Escherichia coli in the Fecal Microbiome of Travelers to South Asia

Edward R. Bevan, Alan McNally, Christopher M. Thomas, Laura J. V. Piddock, Peter M. Hawkey

George A. Jacoby, Editor

DOI: 10.1128/mBio.02408-18

 

ABSTRACT

Over 80% of travelers from the United Kingdom to the Indian subcontinent acquire CTX-M-producing Escherichia coli (CTX-M-EC), but the mechanism of CTX-M-EC acquisition is poorly understood. We aimed to investigate the dynamics of CTX-M-EC acquisition in healthy travelers and how this relates to populations of non-CTX-M-EC in the fecal microbiome. This is a prospective observational study of healthy volunteers traveling from the United Kingdom to South Asia. Fecal samples were collected pre- and post-travel at several time points up to 12 months post-travel. A toothpicking experiment was used to determine the proportion of cephalosporin-sensitive E. coli in fecal samples containing CTX-M-EC. MLST and SNP type of pre-travel and post-travel E. coli were deduced by WGS. CTX-M-EC was acquired by 89% (16/18) of volunteers. Polyclonal acquisition of CTX-M-EC was seen in 8/15 volunteers (all had >3 STs across post-travel samples), suggesting multiple acquisition events. Indistinguishable CTX-M-EC clones (zero SNPs apart) are detectable in serial fecal samples up to 7 months after travel, indicating stable maintenance in the fecal microbiome on return to the United Kingdom in the absence of selective pressure. CTX-M-EC-containing samples were often co-colonized with novel, non-CTX-M strains after travel, indicating that acquisition of non-CTX-M-EC occurs alongside CTX-M-EC. The same pre-travel non-CTX-M strains (<10 SNPs apart) were found in post-travel fecal samples after CTX-M-EC had been lost, suggesting return of the fecal microbiome to the pre-travel state and long-term persistence of minority strains in travelers who acquire CTX-M-EC.

 

IMPORTANCE

Escherichia coli strains which produce CTX-M extended-spectrum beta-lactamases are endemic as colonizers of humans and in the environment in South Asia. This study demonstrates that acquisition of CTX-M-producing E. coli (CTX-M-EC) in travelers from the United Kingdom to South Asia is polyclonal, which is likely due to multiple acquisition events from contaminated food and drinking water during travel. CTX-M-EC frequently persists in the fecal microbiome for at least 1 year after acquisition, often alongside newly acquired non-CTX-M E. coli strains. In travelers who acquire CTX-M-EC, pre-travel non-CTX-M E. coli remains as a minority population in the gut until the CTX-M-EC strains are lost. The non-CTX-M strains are then reestablished as the predominant E. coli population. This study has shed light on the dynamics of CTX-M-EC acquisition, colonization, and loss after travel. Future work involving manipulation of nonvirulent resident E. coli could be used to prevent colonization with antibiotic-resistant E. coli.

Keywords: Antibiotics; Drugs Resistance; Cephalosporins; E. Coli; UK; Asian region.

—–

#Prevalence of pretreatment #HIV #drug #resistance in West #African and Southeast #Asian countries (J Antimicrob Chemother., abstract)

[Source: Journal of Antimicrobial Chemotherapy, full page: (LINK). Abstract, edited.]

Prevalence of pretreatment HIV drug resistance in West African and Southeast Asian countries

Nicole Ngo-Giang-Huong Thu, H K Huynh, Anoumou Y Dagnra, Thomas-d’Aquin Toni, Almoustapha I Maiga, Dramane Kania, Sabrina Eymard-Duvernay, Martine Peeters, Cathia Soulie, Gilles Peytavin, Claire Rekacewicz, Marie-Laure Chaix, Avelin F Aghokeng, ANRS 12333 Study Group

Journal of Antimicrobial Chemotherapy, dky443, https://doi.org/10.1093/jac/dky443

Published: 12 November 2018

 

Abstract

Background

ART in the developing world has moved to a new era with the WHO recommendation to test and immediately treat HIV-positive individuals. A high frequency of pretreatment HIV drug resistance (PDR) can compromise ART efficacy. Our study presents updated estimates of PDR in seven countries from West Africa (Burkina Faso, Cameroon, Côte d’Ivoire, Mali and Togo) and Southeast Asia (Thailand and Vietnam).

Methods

Eligible study participants were adult ART initiators, recruited from December 2015 to November 2016 in major ART clinics in each country. HIV drug resistance (HIVDR) tests were performed for all specimens and interpretation was done using the Stanford algorithm.

Results

Overall, 1153 participants were recruited and 1020 nt sequences were generated. PDR frequency among all initiators was 15.9% (95% CI: 13.8%–18.3%) overall, ranging from 9.6% and 10.2% in Burkina Faso and Thailand, respectively, 14.7% in Vietnam, 15.4% in Mali, 16.5% in Côte d’Ivoire and 19.3% in Cameroon, to 24.6% in Togo. The prevalence of NNRTI resistance mutations was 12%; NRTI and PI PDR prevalences were 4% and 3%, respectively.

Conclusions

Our study shows that in most countries PDR exceeded 10%, warranting the conduct of nationally representative surveys to confirm this trend. In the meantime, actions to prevent drug resistance, including transition from NNRTIs to more robust drug classes should be urgently implemented.

Issue Section: ORIGINAL RESEARCH

Keywords: HIV/AIDS; Antivirals; Drugs Resistance; West Africa; Asian Region.

——