Novel #Reassortant Highly Pathogenic #Avian #Influenza A(#H5N2) Virus in Broiler #Chickens, #Egypt (Emerg Infect Dis., abstract)

[Source: US Centers for Disease Control and Prevention (CDC), Emerging Infectious Diseases Journal, full page: (LINK). Abstract, edited.]

Volume 26, Number 1—January 2020 / Dispatch

Novel Reassortant Highly Pathogenic Avian Influenza A(H5N2) Virus in Broiler Chickens, Egypt

Kareem E. Hassan, Jacqueline King, Magdy El-Kady, Manal Afifi, Hassanein H. Abozeid, Anne Pohlmann, Martin Beer, and Timm Harder

Author affiliations: Friedrich-Loeffler-Institut, Greifswald-Riems, Germany (K.E. Hassan, J. King, A. Pohlmann, M. Beer, T. Harder); Beni Suef University, Beni Suef, Egypt (K.E. Hassan, M. El-Kady); Cairo University, Cairo, Egypt (M. Afifi, H.H. Abozeid)

 

Abstract

We detected a novel reassortant highly pathogenic avian influenza A(H5N2) virus in 3 poultry farms in Egypt. The virus carried genome segments of a pigeon H9N2 influenza virus detected in 2014, a nucleoprotein segment of contemporary chicken H9N2 viruses from Egypt, and hemagglutinin derived from the 2.3.4.4b H5N8 virus clade.

Keywords: Avian Influenza; H5N2; H9N2; H5N8; Reassortant strain; Poultry; Egypt.

——

Highly Pathogenic and Low Pathogenic #Avian #Influenza #H5 Subtype Viruses in #WildBirds in #Ukraine (Avian Dis., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Avian Dis. 2019 Mar 1;63(sp1):235-245. doi: 10.1637/11880-042718.1.

Highly Pathogenic and Low Pathogenic Avian Influenza H5 Subtype Viruses in Wild Birds in Ukraine.

Muzyka D1, Rula O2, Tkachenko S2, Muzyka N3, Köthe S4, Pishchanskyi O2, Stegniy B2, Pantin-Jackwood M5, Beer M4.

Author information: 1 National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”, Kharkiv, 61023, Ukraine, dmuzyka77@gmail.com. 2 National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”, Kharkiv, 61023, Ukraine. 3 State Poultry Research Station, v. Birky, Kharkiv Region, 63422, Ukraine. 4 Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany. 5 Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30677.

 

Abstract in English, Spanish

There have been three waves of highly pathogenic avian influenza (HPAI) outbreaks in commercial, backyard poultry, and wild birds in Ukraine. The first (2005-2006) and second (2008) waves were caused by H5N1 HPAI virus, with 45 outbreaks among commercial poultry (chickens) and backyard fowl (chickens, ducks, and geese) in four regions of Ukraine (AR Crimea, Kherson, Odesa, and Sumy Oblast). H5N1 HPAI viruses were isolated from dead wild birds: cormorants (Phalacrocorax carbo) and great crested grebes (Podiceps cristatus) in 2006 and 2008. The third HPAI wave consisted of nine outbreaks of H5N8 HPAI in wild and domestic birds, beginning in November 2016 in the central and south regions (Kherson, Odesa, Chernivtsi, Ternopil, and Mykolaiv Oblast). H5N8 HPAI virus was detected in dead mute swans (Cygnus olor), peacocks (Pavo cristatus) (in zoo), ruddy shelducks (Tadorna ferruginea), white-fronted geese (Anser albifrons), and from environmental samples in 2016 and 2017. Wide wild bird surveillance for avian influenza (AI) virus was conducted from 2006 to 2016 in Ukraine regions suspected of being intercontinental (north-south and east-west) flyways. A total of 21 511 samples were collected from 105 species of wild birds representing 27 families and 11 orders. Ninety-five avian influenza (AI) viruses were isolated (including one H5N2 LPAI virus in 2010) from wild birds with a total of 26 antigenic hemagglutinin (HA) and neuraminidase (NA) combinations. Fifteen of 16 known avian HA subtypes were isolated. Two H5N8 HPAI viruses (2016-2017) and two H5N2 LPAI viruses (2016) were isolated from wild birds and environmental samples (fresh bird feces) during surveillance before the outbreak in poultry in 2016-2017. The Ukrainian H5N1, H5N8 HPAI, and H5N2 LPAI viruses belong to different H5 phylogenetic groups. Our results demonstrate the great diversity of AI viruses in wild birds in Ukraine, as well as the importance of this region for studying the ecology of avian influenza.

KEYWORDS: Azov–Black Sea region of Ukraine; highly pathogenic and low pathogenic avian influenza virus subtype H5; surveillance; wild birds

PMID: 31713401 DOI: 10.1637/11880-042718.1

Keywords: Avian Influenza; H5N1; H5N2; H5N8; Wild Birds; Ukraine.

——

A live attenuated #H5N2 prime- inactivated #H5N1 boost #vaccination induces #influenza virus #hemagglutinin #stalk specific #antibody responses (Vaccine, abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Vaccine. 2019 Nov 7. pii: S0264-410X(19)31473-2. doi: 10.1016/j.vaccine.2019.10.084. [Epub ahead of print]

A live attenuated H5N2 prime- inactivated H5N1 boost vaccination induces influenza virus hemagglutinin stalk specific antibody responses.

Kongchanagul A1, Samnuan K2, Wirachwong P3, Surichan S3, Puthavathana P4, Pitisuttithum P5, Boonnak K6.

Author information: 1 Institute of Molecular Biosciences, Mahidol University, Thailand. 2 Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Thailand. 3 Government Pharmaceutical Organization, Thailand. 4 Faculty of Medical Technology, Mahidol University, Thailand. 5 Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Thailand; Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Thailand. 6 Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Thailand. Electronic address: Kobporn.boo@mahidol.ac.th.

 

Abstract

BACKGROUND:

The emergence and spread of highly pathogenic avian influenza (H5N1) viruses have raised global concerns of a possible human pandemic, spurring efforts towards H5N1 influenza vaccine development and improvements in vaccine administration methods. We previously showed that a prime-boost vaccination strategy induces robust and broadly cross-reactive antibody responses against the hemagglutinin globular head domain. Here, we specifically measure antibodies against the conserved hemagglutinin stem region in serum samples obtained from the prior study to determine whether stalk-reactive antibodies can also be induced by the prime-boost regimen.

METHOD:

Serum samples collected from 60 participants before vaccination and on days 7, 28 and 90 following boosting vaccination were used in this study. 40 participants received two doses of live attenuated H5N2 vaccine (LAIV H5N2) followed by one dose of inactivated H5N1 vaccine a year later, while 20 participants received only the inactivated H5N1 vaccine. We tested these serum samples for stalk-reactive antibodies via enzyme-linked immunosorbent (ELISA) and microneutralization assays.

RESULTS:

Stalk-specific antibody levels measured by both assays were found to be significantly higher in primed individuals than the unprimed group. ELISA results showed that 22.5, 70.5 and 57.5% of primed participants had a four-fold or more increase in stalk antibody titers on days 7, 28 and 90 following boosting vaccination, respectively; whereas the unprimed group had no increase. Peak geometric mean titers (GMT) for stalk antibodies in the LAIV H5N2 experienced group (24,675 [95% CI; 19,531-31,174]) were significantly higher than those who received only the inactivated H5N1 vaccine (8877 [7140-11,035]; p < 0·0001). Moreover, stalk antibodies displaying neutralizing activity also increased in primed participants, but not in the unprimed group.

CONCLUSION:

Our finding emphasizes the importance of prime-boost vaccination for effectively inducing stalk antibodies, which is an attractive target for developing vaccines that induce stalk reactive antibodies.

Copyright © 2019 Elsevier Ltd. All rights reserved.

KEYWORDS: Influenza vaccine; Prime-boost vaccination; Stalk antibody

PMID: 31708176 DOI: 10.1016/j.vaccine.2019.10.084

Keywords: Avian Influenza; H5N1; H5N2; Human; Vaccines.

——

#Pathobiology and innate immune responses of gallinaceous #poultry to clade 2.3.4.4A #H5Nx highly pathogenic #avian #influenza virus #infection (Vet Res., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Vet Res. 2019 Nov 1;50(1):89. doi: 10.1186/s13567-019-0704-5.

Pathobiology and innate immune responses of gallinaceous poultry to clade 2.3.4.4A H5Nx highly pathogenic avian influenza virus infection.

Bertran K1,2, Pantin-Jackwood MJ1, Criado MF1, Lee DH1,3, Balzli CL1,4, Spackman E1, Suarez DL1, Swayne DE5.

Author information: 1 Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA. 2 IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain. 3 Department of Pathobiology & Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA. 4 Battelle National Biodefense Institute, National Biodefense Analysis and Countermeasures Center, 8300 Research PI, Fort Detrick, MD, 21702, USA. 5 Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA. david.swayne@usda.gov.

 

Abstract

In the 2014-2015 Eurasian lineage clade 2.3.4.4A H5 highly pathogenic avian influenza (HPAI) outbreak in the U.S., backyard flocks with minor gallinaceous poultry and large commercial poultry (chickens and turkeys) operations were affected. The pathogenesis of the first H5N8 and reassortant H5N2 clade 2.3.4.4A HPAI U.S. isolates was investigated in six gallinaceous species: chickens, Japanese quail, Bobwhite quail, Pearl guinea fowl, Chukar partridges, and Ring-necked pheasants. Both viruses caused 80-100% mortality in all species, except for H5N2 virus that caused 60% mortality in chickens. The surviving challenged birds remained uninfected based on lack of clinical disease and lack of seroconversion. Among the infected birds, chickens and Japanese quail in early clinical stages (asymptomatic and listless) lacked histopathologic findings. In contrast, birds of all species in later clinical stages (moribund and dead) had histopathologic lesions and systemic virus replication consistent with HPAI virus infection in gallinaceous poultry. These birds had widespread multifocal areas of necrosis, sometimes with heterophilic or lymphoplasmacytic inflammatory infiltrate, and viral antigen in parenchymal cells of most tissues. In general, lesions and antigen distribution were similar regardless of virus and species. However, endotheliotropism was the most striking difference among species, with only Pearl guinea fowl showing widespread replication of both viruses in endothelial cells of most tissues. The expression of IFN-γ and IL-10 in Japanese quail, and IL-6 in chickens, were up-regulated in later clinical stages compared to asymptomatic birds.

PMID: 31675983 DOI: 10.1186/s13567-019-0704-5

Keywords: Avian Influenza; H5N1; H5N2; H5N8; Reassortant strain; Poultry; Viral pathogenesis.

——

Clade 2.3.4.4 #H5 North #American Highly Pathogenic #Avian #Influenza Viruses Infect, but Do Not Cause #Clinical Signs in, American Black #Ducks (Anas rubripes) (Avian Dis., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Avian Dis. 2019 Jan 18;63(2):366-370. doi: 10.1637/11950-081418-ResNote.1.

Clade 2.3.4.4 H5 North American Highly Pathogenic Avian Influenza Viruses Infect, but Do Not Cause Clinical Signs in, American Black Ducks (Anas rubripes).

Spackman E1, Prosser DJ2, Pantin-Jackwood M3, Stephens CB3, Berlin AM2.

Author information: 1 Southeast Poultry Research Laboratory, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, Athens, GA 30605, erica.spackman@ars.usda.gov. 2 Patuxent Wildlife Research Center, United States Geological Survey, Laurel, MD 20708. 3 Southeast Poultry Research Laboratory, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, Athens, GA 30605.

 

Abstract in English, Spanish

Highly pathogenic avian influenza virus (HPAIV) from the goose/Guangdong/1996 clade 2.3.4.4 H5 lineage spread from Asia into North America in 2014, most likely by wild bird migrations. Although several variants of the virus were detected, H5N8 and H5N2 were the most widespread in North American wild birds and domestic poultry. In early 2015, the H5N2 virus spread through commercial poultry in the Midwest, and >50 million chickens and turkeys died or had to be culled. Related H5 HPAIVs are still endemic in much of the Eastern Hemisphere. The wild bird species that were involved with dissemination of the virus in North America are not known. Dabbling ducks, especially mallards (Anas platyrhynchos), typically have the highest detection rates for avian influenza viruses. To better characterize the wild avian species that could spread the virus, American black ducks (Anas rubripes), which are closely related to mallards, were challenged with the North American H5N2 and H5N8 index HPAIV isolates: A/Northern Pintail/WA/40964/2014 H5N2 and A/Gyrfalcon/WA/41088/2014 H5N8. Although the American black ducks could be infected with low doses of both isolates (≤102 50% egg infective doses), ducks shed the H5N2 longer than the H5N8 (10 vs. 7 days) and the titers of virus shed were higher. Although there were too few ducks available on which to draw definitive conclusions, this suggests that American black ducks could serve as a more efficient reservoir for the H5N2 virus than the H5N8 virus.

KEYWORDS: H5 influenza; avian virus; duck virus; highly pathogenic avian influenza virus

PMID: 31251539 DOI: 10.1637/11950-081418-ResNote.1

Keywords: Avian Influenza; H5N2; H5N8; Reassortant strain; Wild Birds; USA.

——

Development of #American-Lineage #Influenza #H5N2 #Reassortant #Vaccine Viruses for #Pandemic #Preparedness (Viruses, abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Viruses. 2019 Jun 11;11(6). pii: E543. doi: 10.3390/v11060543.

Development of American-Lineage Influenza H5N2 Reassortant Vaccine Viruses for Pandemic Preparedness.

Chen PL1,2, Hu AY3, Lin CY4, Weng TC5, Lai CC6,7, Tseng YF8, Cheng MC9,10, Chia MY11,12, Lin WC13, Yeh CT14, Su IJ15, Lee MS16.

Author information: 1 National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan. letitia@nhri.org.tw. 2 Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan. letitia@nhri.org.tw. 3 National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan. alanhu@nhri.org.tw. 4 National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan. grayingaries@outlook.com. 5 National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan. wtc@nhri.org.tw. 6 National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan. laicc2@nhri.org.tw. 7 College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan. laicc2@nhri.org.tw. 8 National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan. yufents@gmail.com. 9 Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan. mccheng@mail.npust.edu.tw. 10 Animal Health Research Institutes, Danshui, New Taipei City 25158, Taiwan. mccheng@mail.npust.edu.tw. 11 National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan. chiaminyuan@dragon.nchu.edu.tw. 12 Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan. chiaminyuan@dragon.nchu.edu.tw. 13 Institute of Preventive Medicine, National Defence Medical Centre, Taipei 23742, Taiwan. spps057@gmail.com. 14 Institute of Preventive Medicine, National Defence Medical Centre, Taipei 23742, Taiwan. yyhome@mail.ndmctsgh.edu.tw. 15 National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan. suihjen0704@stust.edu.tw. 16 National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan. minshi@nhri.org.tw.

 

Abstract

Novel low-pathogenic avian influenza (LPAI) H5N2 viruses hit poultry farms in Taiwan in 2003, and evolved into highly pathogenic avian influenza (HPAI) viruses in 2010. These viruses are reassortant viruses containing HA and NA genes from American-lineage H5N2 and six internal genes from local H6N1 viruses. According to a serological survey, the Taiwan H5N2 viruses can cause asymptomatic infections in poultry workers. Therefore, a development of influenza H5N2 vaccines is desirable for pandemic preparation. In this study, we employed reverse genetics to generate a vaccine virus having HA and NA genes from A/Chicken/CY/A2628/2012 (E7, LPAI) and six internal genes from a Vero cell-adapted high-growth H5N1 vaccine virus (Vero-15). The reassortant H5N2 vaccine virus, E7-V15, presented high-growth efficiency in Vero cells (512 HAU, 107.6 TCID50/mL), and passed all tests for qualification of candidate vaccine viruses. In ferret immunization, two doses of inactivated whole virus antigens (3 μg of HA protein) adjuvanted with alum could induce robust antibody response (HI titre 113.14). In conclusion, we have established reverse genetics to generate a qualified reassortant H5N2 vaccine virus for further development.

KEYWORDS: American-lineage H5N2 vaccine; American-lineage reassortant influenza viruses; Pandemic preparedness

PMID: 31212631 DOI: 10.3390/v11060543

Keywords: Avian Influenza; H5N1; H5N2; H6N1; Reassortant Strain; Vaccines.

——

The #Emergence and Decennary #Distribution of Clade 2.3.4.4 #HPAI #H5Nx (Microorganisms., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Microorganisms. 2019 May 29;7(6). pii: E156. doi: 10.3390/microorganisms7060156.

The Emergence and Decennary Distribution of Clade 2.3.4.4 HPAI H5Nx.

Antigua KJC1, Choi WS2, Baek YH3, Song MS4.

Author information: 1 College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea. tineantigua@gmail.com. 2 College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea. tuckgirlee@naver.com. 3 College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea. microuni@chungbuk.ac.kr. 4 College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea. songminsuk@chungbuk.ac.kr.

 

Abstract

Reassortment events among influenza viruses occur naturally and may lead to the development of new and different subtypes which often ignite the possibility of an influenza outbreak. Between 2008 and 2010, highly pathogenic avian influenza (HPAI) H5 of the N1 subtype from the A/goose/Guangdong/1/96-like (Gs/GD) lineage generated novel reassortants by introducing other neuraminidase (NA) subtypes reported to cause most outbreaks in poultry. With the extensive divergence of the H5 hemagglutinin (HA) sequences of documented viruses, the WHO/FAO/OIE H5 Evolutionary Working Group clustered these viruses into a systematic and unified nomenclature of clade 2.3.4.4 currently known as “H5Nx” viruses. The rapid emergence and circulation of these viruses, namely, H5N2, H5N3, H5N5, H5N6, H5N8, and the regenerated H5N1, are of great concern based on their pandemic potential. Knowing the evolution and emergence of these novel reassortants helps to better understand their complex nature. The eruption of reports of each H5Nx reassortant through time demonstrates that it could persist beyond its usual seasonal activity, intensifying the possibility of these emerging viruses’ pandemic potential. This review paper provides an overview of the emergence of each novel HPAI H5Nx virus as well as its current epidemiological distribution.

KEYWORDS: H5Nx; avian; avian influenza; dissemination; epidemiology; evolution

PMID: 31146461 DOI: 10.3390/microorganisms7060156

Keywords: Avian Influenza; Reassortant strain; H5N1; H5N2; H5N3; H5N5; H5N6; H5N8; Poultry; Wild birds.

——