Higher #virulence of #swine #H1N2 #influenza viruses containing #avian-origin #HA and 2009 #pandemic PA and NP in #pigs and mice (Arch Virol., abstract)

[Source: Archives of Virology, full page: (LINK). Abstract, edited.]

Higher virulence of swine H1N2 influenza viruses containing avian-origin HA and 2009 pandemic PA and NP in pigs and mice

Yunyueng Jang, Taehyun Seo & Sang Heui Seo

Archives of Virology (2020)

 

Abstract

Pigs are capable of harbouring influenza A viruses of human and avian origin in their respiratory tracts and thus act as an important intermediary host to generate novel influenza viruses with pandemic potential by genetic reassortment between the two viruses. Here, we show that two distinct H1N2 swine influenza viruses contain avian-like or classical swine-like hemagglutinins with polymerase acidic (PA) and nucleoprotein (NP) genes from 2009 pandemic H1N1 influenza viruses that were found to be circulating in Korean pigs in 2018. Swine H1N2 influenza virus containing an avian-like hemagglutinin gene had enhanced pathogenicity, causing severe interstitial pneumonia in infected pigs and mice. The mortality rate of mice infected with swine H1N2 influenza virus containing an avian-like hemagglutinin gene was higher by 100% when compared to that of mice infected with swine H1N2 influenza virus harbouring classical swine-like hemagglutinin. Further, chemokines attracting inflammatory cells were strongly induced in lung tissues of pigs and mice infected by swine H1N2 influenza virus containing an avian-like hemagglutinin gene. In conclusion, it is necessary for the well-being of humans and pigs to closely monitor swine influenza viruses containing avian-like hemagglutinin with PA and NP genes from 2009 pandemic H1N1 influenza viruses.

Keywords: Influenza A; Avian Influenza; Swine Influenza; H1N1pdm09; H1N2; Reassortant strain; Pigs; Animal models.

—–

#Interspecies #Transmission of #Reassortant #Swine #Influenza A Virus Containing #Genes from Swine Influenza A #H1N1pdm09 and A(#H1N2) Viruses (Emerg Infect Dis., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Volume 26, Number 2—February 2020 / Research

Interspecies Transmission of Reassortant Swine Influenza A Virus Containing Genes from Swine Influenza A(H1N1)pdm09 and A(H1N2) Viruses

Helen E. Everett  , Bethany Nash, Brandon Z. Londt1, Michael D. Kelly, Vivien Coward, Alejandro Nunez, Pauline M. van Diemen, Ian H. Brown, and Sharon M. Brookes

Author affiliations: Animal and Plant Health Agency, Weybridge, UK

 

Abstract

Influenza A(H1N1)pdm09 (pH1N1) virus has become established in swine in the United Kingdom and currently co-circulates with previously enzootic swine influenza A virus (IAV) strains, including avian-like H1N1 and human-like H1N2 viruses. During 2010, a swine influenza A reassortant virus, H1N2r, which caused mild clinical disease in pigs in the United Kingdom, was isolated. This reassortant virus has a novel gene constellation, incorporating the internal gene cassette of pH1N1-origin viruses and hemagglutinin and neuraminidase genes of swine IAV H1N2 origin. We investigated the pathogenesis and infection dynamics of the H1N2r isolate in pigs (the natural host) and in ferrets, which represent a human model of infection. Clinical and virologic parameters were mild in both species and both intraspecies and interspecies transmission was observed when initiated from either infected pigs or infected ferrets. This novel reassortant virus has zoonotic and reverse zoonotic potential, but no apparent increased virulence or transmissibility, in comparison to pH1N1.

Keywords: Swine Influenza; Influenza A; Reassortant strain; H1N1pdm09; H1N2; Pigs; UK.

——

#Genetic and #serologic #surveillance of #canine (CIV) and #equine (EIV) #influenza virus in Nuevo León State, #México (PeerJ., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

PeerJ. 2019 Dec 17;7:e8239. doi: 10.7717/peerj.8239. eCollection 2019.

Genetic and serologic surveillance of canine (CIV) and equine (EIV) influenza virus in Nuevo León State, México.

Plata-Hipólito CB1, Cedillo-Rosales S2, Obregón-Macías N3, Hernández-Luna CE4, Rodríguez-Padilla C1, Tamez-Guerra RS1, Contreras-Cordero JF1.

Author information: 1 Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, San Nicolás de los Garza, Nuevo León, México. 2 Universidad Autónoma de Nuevo León, Facultad de Medicina Veterinaria y Zootecnia, Departamento de Virología, Escobedo, Nuevo León, México. 3 Universidad Autónoma de Nuevo León, Facultad de Medicina Veterinaria y Zootecnia, Departamento de Grandes Especies, Escobedo, Nuevo León, México. 4 Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Química, San Nicolás de los Garza, Nuevo León, México.

 

Abstract

BACKGROUND:

Despite the uncontrolled distribution of the Influenza A virus through wild birds, the detection of canine influenza virus and equine influenza virus in Mexico was absent until now. Recently, outbreaks of equine and canine influenza have been reported around the world; the virus spreads quickly among animals and there is potential for zoonotic transmission.

METHODS:

Amplification of the Influenza A virus matrix gene from necropsies, nasal and conjunctival swabs from trash service horses and pets/stray dogs was performed through RT-PCR. The seroprevalence was carried out through Sandwich enzyme-linked immunosorbent assay system using the M1 recombinant protein and polyclonal antibodies anti-M1.

RESULTS:

The matrix gene was amplified from 13 (19.11%) nasal swabs, two (2.94%) conjunctival swabs and five (7.35%) lung necropsies, giving a total of 20 (29.41%) positive samples in a pet dog population. A total of six (75%) positive samples of equine nasal swab were amplified. Sequence analysis showed 96-99% identity with sequences of Influenza A virus matrix gene present in H1N1, H1N2 and H3N2 subtypes. The phylogenetic analysis of the sequences revealed higher identity with matrix gene sequences detected from zoonotic isolates of subtype H1N1/2009. The detection of anti-M1 antibodies in stray dogs showed a prevalence of 123 (100%) of the sampled population, whereas in horses, 114 (92.68%) positivity was obtained.

CONCLUSION:

The results unveil the prevalence of Influenza A virus in the population of horses and dogs in the state of Nuevo Leon, which could indicate a possible outbreak of equine and Canine Influenza in Mexico. We suggest that the prevalence of Influenza virus in companion animals be monitored to investigate its epizootic and zoonotic potential, in addition to encouraging the regulation of vaccination in these animal species in order to improve their quality of life.

© 2019 Plata-Hipólito et al.

KEYWORDS: Canine Influenza Virus (CIV); Equine Influenza Virus (EIV); Matrix gene (M); Polyclonal antibodies

PMID: 31871842 PMCID: PMC6924343 DOI: 10.7717/peerj.8239

Keywords: Influenza A; Equine Influenza; Canine Avian Influenza; H1N1pdm09; H1N2; H3N2; H1N1; Reassortant strains; Dogs; Horses; Mexico; Serology.

——

#Virological and #epidemiological #patterns of #swine #influenza A virus infections in #France: Cumulative data from the RESAVIP surveillance network, 2011-2018

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Vet Microbiol. 2019 Dec;239:108477. doi: 10.1016/j.vetmic.2019.108477. Epub 2019 Nov 3.

Virological and epidemiological patterns of swine influenza A virus infections in France: Cumulative data from the RESAVIP surveillance network, 2011-2018.

Hervé S1, Garin E2, Calavas D3, Lecarpentier L4, Ngwa-Mbot D5, Poliak S6, Wendling S7, Rose N8, Simon G9.

Author information: 1 ANSES, French Agency for food, environmental and occupational health and safety, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, Ploufragan, France; Bretagne Loire University, France. Electronic address: severine.herve@anses.fr. 2 Coop de France, Animal Health Service, Paris, France; Epidemiological Surveillance Platform for Animal Health (ESA Platform), Operational Team, Paris, France. 3 Epidemiological Surveillance Platform for Animal Health (ESA Platform), Operational Team, Paris, France; ANSES, French Agency for food, environmental and occupational health and safety, Lyon Laboratory, Epidemiological Surveillance Platform for animal health (ESA Platform), Lyon, France. 4 SNGTV, French National Society of Veterinary Technical Groups, Paris, France. 5 GDS France, French Federation of Health Protection Groups, Paris, France. 6 ADILVA, French Association of Directors and Executives of Public Veterinary Laboratories, Paris, France. 7 Epidemiological Surveillance Platform for Animal Health (ESA Platform), Operational Team, Paris, France; Ministry of Agriculture, DGAL, Directorate General for Food, Paris, France. 8 Bretagne Loire University, France; ANSES, French Agency for food, environmental and occupational health and safety, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare Unit, Ploufragan, France. 9 ANSES, French Agency for food, environmental and occupational health and safety, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, Ploufragan, France; Bretagne Loire University, France.

 

Abstract

Swine influenza A viruses (swIAVs) cause acute respiratory syndromes in pigs and may also infect humans. Following the 2009 pandemic, a network was established in France to reinforce swIAV monitoring. This study reports virological and epidemiological data accumulated through passive surveillance conducted during 1,825 herd visits from 2011 to 2018. Among them, 887 (48.6 %) tested swIAV-positive. The proportion of positive cases remained stable year-on-year and year-round. The European avian-like swine H1N1 (H1avN1) virus was the most frequently identified (69.6 %), and was widespread across the country. The European human-like reassortant swine H1N2 (H1huN2) virus accounted for 22.1 % and was only identified in the north-western quarter and recently in the far north. The 2009 pandemic H1N1 (H1N1pdm) virus (3.6 %) was detected throughout the country, without settling in areas of higher pig densities. Its proportion increased in winter, during the seasonal epidemics in humans. The European human-like reassortant swine H3N2 as well as H1avN2 viruses were identified sporadically. In up to 30 % of swIAV-positive cases, pigs exhibited clinical signs of high intensity, regardless of the viral subtype and vaccination program. The recurrent pattern of the disease, i.e., an endemic infection at the herd level, was reported in 41% of cases and mainly affected post-weaning piglets (OR = 5.11 [3.36-7.76]). Interestingly, the study also revealed a significant association between the recurrent pattern and sow vaccination (OR = 1.96 [1.37-2.80]). Although restricted to the studied pig population, these results bring new knowledge about swIAV dynamics and infection patterns in pig herds in France.

Copyright © 2019 Elsevier B.V. All rights reserved.

KEYWORDS: Epidemiological features; Pigs; RESAVIP; Surveillance; Swine influenza A virus

PMID: 31767089 DOI: 10.1016/j.vetmic.2019.108477

Keywords: Influenza A; Swine Influenza; H1N1; H1N2; H3N2; H1N1pdm09; Pigs; France; Reassortant strain.

——

A case of #reassortant seasonal #influenza A(#H1N2) virus, #Denmark, April 2019 (Euro Surveill., abstract)

[Source: Eurosurveillance, full page: (LINK). Abstract, edited.]

A case of reassortant seasonal influenza A(H1N2) virus, Denmark, April 2019

Ramona Trebbien1, Anders Koch2, Lene Nielsen3, Dår Kristian Kur4, Pontus Westerström5, Tyra Grove Krause2

Affiliations: 1 National Influenza Center, Statens Serum Institut, Copenhagen, Denmark; 2 Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark; 3 Department of Clinical Microbiology, Herlev Hospital, Copenhagen University, Herlev, Denmark; 4 Department of Clinical Biochemistry, North Zealand Hospital, Hillerød, Denmark; 5 Department of Pulmonary and Infectious Diseases, North Zealand Hospital, Hillerød, Denmark

Correspondence:  Ramona Trebbien

Citation style for this article: Trebbien Ramona, Koch Anders, Nielsen Lene, Kur Dår Kristian, Westerström Pontus, Krause Tyra Grove. A case of reassortant seasonal influenza A(H1N2) virus, Denmark, April 2019. Euro Surveill. 2019;24(27):pii=1900406. https://doi.org/10.2807/1560-7917.ES.2019.24.27.1900406

Received: 21 Jun 2019;   Accepted: 03 Jul 2019

 

Abstract

A reassortant influenza A subtype H1N2 virus with gene segments from seasonal A(H1N1)pdm09 virus (HA, MP, NP, NS, PA, PB1 and PB2) and seasonal A(H3N2) virus (NA) was identified in a routine surveillance sample in Denmark. The patient recovered fully. This is the second reassortant influenza A(H1N2) virus identified in Europe in the 2018/19 influenza season, with the first case being detected December 2018 in Sweden.

©  This work is licensed under a Creative Commons Attribution 4.0 International License.

Keywords: Seasonal Influenza; H1N1pdm09; H3N2; H1N2; Reassortant strain; Human; Denmark.

——

#PB2 and #hemagglutinin #mutations confer a #virulent #phenotype on an #H1N2 #avian #influenza virus in mice (Arch Virol., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Arch Virol. 2019 Aug;164(8):2023-2029. doi: 10.1007/s00705-019-04283-0. Epub 2019 May 20.

PB2 and hemagglutinin mutations confer a virulent phenotype on an H1N2 avian influenza virus in mice.

Yu Z1, Ren Z2, Zhao Y3, Cheng K4, Sun W3, Zhang X3, Wu J5, He H6, Xia X7, Gao Y8.

Author information: 1 Institute of Poultry Science, Shandong Academy of Agricultural Sciences, No. 1 Jiaoxiao road, Jinan, 250023, Shandong, China. zhijun0215@gmail.com. 2 Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China. 3 Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Science of PLA, 666 Liuyingxi St., Changchun, 130122, People’s Republic of China. 4 Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250132, China. 5 Institute of Poultry Science, Shandong Academy of Agricultural Sciences, No. 1 Jiaoxiao road, Jinan, 250023, Shandong, China. 6 College of Life Sciences, Shandong Normal University, Jinan, 250014, China. 7 Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Science of PLA, 666 Liuyingxi St., Changchun, 130122, People’s Republic of China. xiaxzh@cae.cn. 8 Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Science of PLA, 666 Liuyingxi St., Changchun, 130122, People’s Republic of China. gaoyuwei@gmail.com.

 

Abstract

We previously obtained mouse-adapted variants of H1N2 avian influenza virus that contained PB2-L134H, PB2-I647L, PB2-D701N, HA-G228S, and M1-D231N mutations. Here, we analyzed the effects of these mutations on viral pathogenicity in a mammalian model. By evaluating the virulence of mouse-adapted H1N2 variants at different generations, we found that the PB2-D701N and HA-G228S mutations both contribute to the virulence of this virus in mammals. Furthermore, we found that the PB2-D701N and HA-G228S mutations both enhance the ability of the virus to replicate in vivo and in vitro and that the PB2-D701N substitution results in an expansion of viral tissue tropism. These results suggest that the PB2-D701N mutation and the HA-G228S mutation are the major mammalian determinants of H1N2 virus. These results help us to understand more about the mechanisms by which influenza viruses adapt to mammals, and monitoring of these mutations can be used in continuous influenza surveillance to assess the pandemic potential of avian influenza virus variants.

PMID:  31111259  DOI:  10.1007/s00705-019-04283-0 [Indexed for MEDLINE]

Keywords: Avian Influenza; H1N2; Animal models.

——

#Genetic and #biological characteristics of #avian #influenza virus subtype #H1N8 in #environments related to live #poultry #markets in #China (BMC Infect Dis., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

BMC Infect Dis. 2019 May 22;19(1):458. doi: 10.1186/s12879-019-4079-z.

Genetic and biological characteristics of avian influenza virus subtype H1N8 in environments related to live poultry markets in China.

Zhang Y1, Dong J1, Bo H1, Dong L1, Zou S1, Li X1, Shu Y1,2, Wang D3.

Author information: 1 Chinese National Influenza Centre, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China. 2 Present Address: Public Health School (Shenzhen), Sun Yat-sen University, Guangzhou, China. 3 Chinese National Influenza Centre, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China. dayanwang@cnic.org.cn.

 

Abstract

BACKGROUND:

Since 2008, avian influenza surveillance in poultry-related environments has been conducted annually in China. Samples have been collected from environments including live poultry markets, wild bird habitats, slaughterhouses, and poultry farms. Multiple subtypes of avian influenza virus have been identified based on environmental surveillance, and an H1N8 virus was isolated from the drinking water of a live poultry market.

METHODS:

Virus isolation was performed by inoculating influenza A-positive specimens into embryonated chicken eggs. Next-generation sequencing was used for whole-genome sequencing. A solid-phase binding assay was performed to test the virus receptor binding specificity. Trypsin dependence plaque formation assays and intravenous pathogenicity index tests were used to evaluate virus pathogenicity in vitro and in vivo, respectively. Different cell lines were chosen for comparison of virus replication capacity.

RESULTS:

According to the phylogenetic trees, the whole gene segments of the virus named A/Environment/Fujian/85144/2014(H1N8) were of Eurasian lineage. The HA, NA, PB1, and M genes showed the highest homology with those of H1N8 or H1N2 subtype viruses isolated from local domestic ducks, while the PB2, PA, NP and NS genes showed high similarity with the genes of H7N9 viruses detected in 2017 and 2018 in the same province. This virus presented an avian receptor binding preference. The plaque formation assay showed that it was a trypsin-dependent virus. The intravenous pathogenicity index (IVPI) in chickens was 0.02. The growth kinetics of the A/Environment/Fujian/85144/2014(H1N8) virus in different cell lines were similar to those of a human-origin virus, A/Brisbane/59/2007(H1N1), but lower than those of the control avian-origin and swine-origin viruses.

CONCLUSIONS:

The H1N8 virus was identified in avian influenza-related environments in China for the first time and may have served as a gene carrier involved in the evolution of the H7N9 virus in poultry. This work further emphasizes the importance of avian influenza virus surveillance, especially in live poultry markets (LPMs). Active surveillance of avian influenza in LPMs is a major pillar supporting avian influenza control and response.

KEYWORDS: Avian influenza virus; H1N8 subtype; Live poultry market

PMID: 31117981 DOI: 10.1186/s12879-019-4079-z

Keywords: Avian Influenza; Poultry; Live poultry markets; China; Reassortant strain; H1N1; H1N2; H7N9.

——