#Threats of #Zika virus #transmission for #Asia and its Hindu-Kush #Himalayan region (Infect Dis Poverty., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

Infect Dis Poverty. 2018 May 15;7(1):40. doi: 10.1186/s40249-018-0426-3.

Threats of Zika virus transmission for Asia and its Hindu-Kush Himalayan region.

Dhimal M1,2, Dahal S3, Dhimal ML4,5, Mishra SR6, Karki KB3, Aryal KK3, Haque U7, Kabir MI8, Guin P9,10, Butt AM11, Harapan H12, Liu QY13, Chu C14, Montag D15, Groneberg DA4, Pandey BD16, Kuch U4, Müller R4.

Author information: 1 Nepal Health Research Council (NHRC), Ramshah Path, Kathmandu, Nepal. meghdhimal@gmail.com. 2 Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany. meghdhimal@gmail.com. 3 Nepal Health Research Council (NHRC), Ramshah Path, Kathmandu, Nepal. 4 Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany. 5 Faculty of Social Sciences, Goethe University, Frankfurt am Main, Germany. 6 The University of Queensland, Brisbane, Australia. 7 Department of Public Health, Baldwin Wallace University, Berea, Ohio, USA. 8 Department of Epidemiology, National Institute of Preventive and Social Medicine, Ministry of Health and Family Welfare, Dhaka, Bangladesh. 9 Public Health Foundation of India, Gurgaon, Haryana, India. 10 Centre for Environmental Health, Gurgaon, Haryana, India. 11 Translational Genomics Laboratory, Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Islamabad, 45550, Pakistan. 12 Medical Research Unit, School of Medicine, Syiah Kuala University, Banda Aceh, Indonesia. 13 WHO Collaborating Centre for Vector Surveillance and Management, SKLID, CCID, ICDC, China CDC, Beijing, China. 14 Centre for Environment and Population Health, Griffith University, Nathan, Queensland, Australia. 15 Barts and the London School of Medicine, Centre for Primary Care and Public Health, Queen Mary University of London, London, UK. 16 Department of Health Services, Ministry of Health, Government of Nepal, Kathmandu, Nepal.

 

Abstract

Asia and its Hindu Kush Himalayan (HKH) region is particularly vulnerable to environmental change, especially climate and land use changes further influenced by rapid population growth, high level of poverty and unsustainable development. Asia has been a hotspot of dengue fever and chikungunya mainly due to its dense human population, unplanned urbanization and poverty. In an urban cycle, dengue virus (DENV) and chikungunya virus (CHIKV) are transmitted by Aedes aegypti and Ae. albopictus mosquitoes which are also competent vectors of Zika virus (ZIKV). Over the last decade, DENV and CHIKV transmissions by Ae. aegypti have extended to the Himalayan countries of Bhutan and Nepal and ZIKV could follow in the footsteps of these viruses in the HKH region. The already established distribution of human-biting Aedes mosquito vectors and a naïve population with lack of immunity against ZIKV places the HKH region at a higher risk of ZIKV. Some of the countries in the HKH region have already reported ZIKV cases. We have documented an increasing threat of ZIKV in Asia and its HKH region because of the high abundance and wide distribution of human-biting mosquito vectors, climate change, poverty, report of indigenous cases in the region, increasing numbers of imported cases and a naïve population with lack of immunity against ZIKV. An outbreak anywhere is potentially a threat everywhere. Therefore, in order to ensure international health security, all efforts to prevent, detect, and respond to ZIKV ought to be intensified now in Asia and its HKH region. To prepare for possible ZIKV outbreaks, Asia and the HKH region can also learn from the success stories and strategies adopted by other regions and countries in preventing ZIKV and associated complications. The future control strategies for DENV, CHIKV and ZIKV should be considered in tandem with the threat to human well-being that is posed by other emerging and re-emerging vector-borne and zoonotic diseases, and by the continuing urgent need to strengthen public primary healthcare systems in the region.

KEYWORDS: Aedes aegypti; Aedes albopictus; Chikungunya virus; Dengue virus; Hindu Kush Himalayas; Mountain; Poverty, Zika virus

PMID: 29759076 DOI: 10.1186/s40249-018-0426-3

Keywords: Arbovirus; Dengue Fever; Chikungunya Fever; Zika Virus; Mosquitoes; Asia Region; Aedes spp.

——-

Advertisements

#Mosquito #saliva re-shapes #alphavirus #infection and immunopathogenesis (J Virol., abstract)

[Source: Journal of Virology, full page: (LINK). Abstract, edited.]

Mosquito saliva re-shapes alphavirus infection and immunopathogenesis

Siew-Wai Fong a,b, R. Manjunatha Kini a and Lisa F.P. Ng b,c#

Author Affiliations: a Department of Biological Science, National University of Singapore, Singapore 117543, Singapore; b Singapore Immunology Network, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore 138648, Singapore; c Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, United Kingdom

 

ABSTRACT

Alphaviruses are transmitted to humans via bites of infected mosquitoes. Although alphaviruses have caused a wide magnitude of outbreaks and crippling disease, licensed vaccines or antiviral therapies remain limited. Mosquito vectors such as Aedes and Culex are the main culprits in the transmission of alphaviruses. This review explores how mosquito saliva may promote alphavirus infection. Identifying the roles of mosquito-derived factors in alphavirus pathogenesis will generate novel tools to circumvent and control mosquito-borne alphavirus infections in humans.

 

FOOTNOTES

#Address correspondence to Lisa F.P.Ng, lisa_ng@immunol.a-star.edu.sg

Copyright © 2018 American Society for Microbiology. All Rights Reserved.

Keywords: Alphavirus; Mosquitoes; Culex spp.; Aedes spp.

—–

#Vector Competence of Some #Mosquito Species From #Canada For #Zika Virus (J Am Mosq Control Assoc., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

J Am Mosq Control Assoc. 2017 Dec;33(4):276-281. doi: 10.2987/17-6664.1.

Vector Competence of Some Mosquito Species From Canada For Zika Virus.

Dibernardo A, Turell MJ, Lindsay LR, Loomer C, Iranpour M.

 

Abstract

The recent introduction of Zika virus (ZIKV) into the Americas and the occurrence of birth defects associated with infection during pregnancy have created a concern about the spread of this virus into more northern countries in the Americas. Therefore, we examined several species of mosquitoes found in southern Manitoba, Canada, for their susceptibility to infection and their ability to transmit ZIKV. Aedes cinereus, Ae. euedes, Ae. fitchii, Ae. sticticus, Ae. vexans, Coquillettidia perturbans, Culex restuans, and Cx. tarsalis were captured in the vicinity of Winnipeg, Manitoba; brought to the laboratory; and allowed to feed on a ZIKV-sheep blood suspension to determine oral susceptibility. In addition, some of the nonfed individuals were inoculated intrathoracically to examine for the presence of a salivary gland barrier. Despite ingesting blood containing 105.4 plaque-forming units/ml, infection rates were very low, and infected individuals were only detected for Ae. vexans. Transmission was observed for Ae. vexans, Cq. perturbans, and Cx. restuans that had been inoculated with ZIKV, although rates were low. Based on the extremely low vector competence found in this study and the lack of a preferential feeding on humans, it is unlikely than any of the mosquito species tested in this study would be involved in any large-scale transmission of ZIKV in Canada.

KEYWORDS: artificial blood meal; intrathoracic inoculation; pathogen; transmission

PMID: 29369018 DOI: 10.2987/17-6664.1

Keywords: Zika Virus; Mosquitoes; Canada; Aedes spp.; Culex spp.

——

#Zika virus: An updated #review of #competent or naturally infected #mosquitoes (PLoS Negl Trop Dis., abstract)

[Source: PLoS Neglected Tropical Diseases, full page: (LINK). Abstract, edited.]

Open Access / Review

Zika virus: An updated review of competent or naturally infected mosquitoes

Yanouk Epelboin ,  Stanislas Talaga, Loïc Epelboin,  Isabelle Dusfour

Published: November 16, 2017 / DOI: https://doi.org/10.1371/journal.pntd.0005933

 

Abstract

Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) that recently caused outbreaks in the Americas. Over the past 60 years, this virus has been observed circulating among African, Asian, and Pacific Island populations, but little attention has been paid by the scientific community until the discovery that large-scale urban ZIKV outbreaks were associated with neurological complications such as microcephaly and several other neurological malformations in fetuses and newborns. This paper is a systematic review intended to list all mosquito species studied for ZIKV infection or for their vector competence. We discuss whether studies on ZIKV vectors have brought enough evidence to formally exclude other mosquitoes than Aedes species (and particularly Aedes aegypti) to be ZIKV vectors. From 1952 to August 15, 2017, ZIKV has been studied in 53 mosquito species, including 6 Anopheles, 26 Aedes, 11 Culex, 2 Lutzia, 3 Coquillettidia, 2 Mansonia, 2 Eretmapodites, and 1 Uranotaenia. Among those, ZIKV was isolated from 16 different Aedes species. The only species other than Aedes genus for which ZIKV was isolated were Anopheles coustani, Anopheles gambiae, Culex perfuscus, and Mansonia uniformis. Vector competence assays were performed on 22 different mosquito species, including 13 Aedes, 7 Culex, and 2 Anopheles species with, as a result, the discovery that A. aegypti and Aedes albopictus were competent for ZIKV, as well as some other Aedes species, and that there was a controversy surrounding Culex quinquefasciatus competence. Although Culex, Anopheles, and most of Aedes species were generally observed to be refractory to ZIKV infection, other potential vectors transmitting ZIKV should be explored.

 

Author summary

The first isolation of Zika virus (ZIKV) in mosquitoes was made in 1948 in Aedes africanus. Over the next years, knowledge about ZIKV increased, with detection of the virus in primates, including humans and several other mosquito species. Most of these species were collected in Africa during arbovirus surveillance studies and belong to the genus Aedes, and today, 20 mosquito species have been identified that can be naturally infected by ZIKV. Although field studies are essential to have an overview of potential mosquito vectors of ZIKV during outbreaks or involved in the maintenance of the sylvatic cycle, laboratory studies are needed to assess the capacity of a species to transmit the virus to a new host. Since 2015, corresponding to the beginning of the outbreak in Brazil, vector competence studies have multiplied and confirmed that the mosquito A. aegypti, known to transmit dengue fever and chikungunya viruses, was also the main vector of ZIKV. This review aims to highlight the studies conducted from several laboratories about mosquito species naturally infected or tested for their vector competence for ZIKV.

____

Citation: Epelboin Y, Talaga S, Epelboin L, Dusfour I (2017) Zika virus: An updated review of competent or naturally infected mosquitoes. PLoS Negl Trop Dis11(11): e0005933. https://doi.org/10.1371/journal.pntd.0005933

Editor: Gregory D. Ebel, Colorado State University, UNITED STATES

Published: November 16, 2017

Copyright: © 2017 Epelboin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: YE, ST, and ID acknowledge “an Investissement d’Avenir grant of the Agence Nationale de la Recherche” (CEBA: ANR-10-LABX-25-01). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Keywords: Zika Virus; Mosquitoes; Aedes Aegypti; Aedes Albopictus; Culex Quinquefasciatus; Aedes spp.; Culex spp.

#RossRiver Virus #Seroprevalence, French #Polynesia, 2014–2015 (@CDC_EIDjournal, abstract)

[Source: US Centers for Disease Control and Prevention (CDC), Emerging Infectious Diseases Journal, full page: (LINK). Abstract, edited.]

Volume 23, Number 10—October 2017 / Research Letter

Ross River Virus Seroprevalence, French Polynesia, 2014–2015

Maite Aubry  , Anita Teissier, Michael Huart, Sébastien Merceron, Jessica Vanhomwegen, Claudine Roche, Anne-Laure Vial, Sylvianne Teururai, Sébastien Sicard, Sylvie Paulous, Philippe Desprès, Jean-Claude Manuguerra, Henri-Pierre Mallet, Didier Musso, Xavier Deparis, and Van-Mai Cao-Lormeau

Author affiliations: Institut Louis Malardé, Tahiti, French Polynesia (M. Aubry, A. Teissier, C. Roche, S. Teururai, D. Musso, V.-M. Cao-Lormeau); Centre d’épidémiologie et de santé publique des armées, Marseille, France; and Unité Mixte de Recherche Sciences Economiques et Sociales de la Santé et Traitement de l’Information Médicale, Marseille (M. Huart, S. Sicard, X. Deparis); Institut de la statistique de la Polynésie française, Tahiti; and Institut national de la statistique et des études économiques, Sainte Clotilde, Réunion (S. Merceron); Institut Pasteur, Paris, France (J. Vanhomwegen, S. Paulous, J.-C. Manuguerra); Direction Départementale de la Cohésion Sociale et de la Protection des Populations, Yonne, France (A.-L. Vial); Direction de la Santé de la Polynésie française, Tahiti (A.-L. Vial, H.-P. Mallet); Université de La Réunion, Sainte Clotilde, France ; and Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical, Sainte Clotilde, France (P. Desprès)

 

Abstract

Ross River virus (RRV), spread by Aedes and Culex mosquitoes, is the most commonly transmitted arbovirus in Australia. A serosurvey of blood donors in French Polynesia during 2011–2013 suggested that RRV circulated without being detected. We report RRV circulation in French Polynesia based on further screening of blood samples collected during 2014–2015.

Keywords: Arbovirus; Mosquitoes; Culex spp.; Aedes spp.; French Polynesia; Ross River Virus.

——-

Mitigating #Diseases Transmitted by #Aedes #Mosquitoes: A Cluster-Randomised Trial of #Permethrin-Impregnated #School #Uniforms (PLoS Negl Trop Dis., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

PLoS Negl Trop Dis. 2017 Jan 19;11(1):e0005197. doi: 10.1371/journal.pntd.0005197. eCollection 2017 Jan.

Mitigating Diseases Transmitted by Aedes Mosquitoes: A Cluster-Randomised Trial of Permethrin-Impregnated School Uniforms.

Kittayapong P1,2, Olanratmanee P3, Maskhao P4, Byass P5, Logan J6, Tozan Y7,8, Louis V7, Gubler DJ9, Wilder-Smith A5,6,10,11.

Author information: 1 Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Phatom, Thailand. 2 Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand. 3 Faculty of Science and Technology, Rajabhat Rajanagarindra University, Chachoengsao, Thailand. 4 Faculty of Humanities and Social Sciences, Rajabhat Rajanagarindra University, Chachoengsao, Thailand. 5 Umeå Centre for Global Health Research, Epidemiology and Global Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden. 6 London School of Hygiene and Tropical Medicine, London, United Kingdom. 7 Institute of Public Health, Heidelberg University Medical School, Germany. 8 College of Global Public Health, New York University, New York, United States. 9 Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore. 10 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore. 11 Institute of Public Health, University of Heidelberg, Heidelberg, Germany.

 

Abstract

BACKGROUND:

Viral diseases transmitted via Aedes mosquitoes are on the rise, such as Zika, dengue, and chikungunya. Novel tools to mitigate Aedes mosquitoes-transmitted diseases are urgently needed. We tested whether commercially insecticide-impregnated school uniforms can reduce dengue incidence in school children.

METHODS:

We designed a cluster-randomised controlled trial in Thailand. The primary endpoint was laboratory-confirmed dengue infections. Secondary endpoints were school absenteeism; and impregnated uniforms’ 1-hour knock-down and 24 hour mosquito mortality as measured by standardised WHOPES bioassay cone tests at baseline and after repeated washing. Furthermore, entomological assessments inside classrooms and in outside areas of schools were conducted.

RESULTS:

We enrolled 1,811 pupils aged 6-17 from 5 intervention and 5 control schools. Paired serum samples were obtained from 1,655 pupils. In the control schools, 24/641 (3.7%) and in the intervention schools 33/1,014 (3.3%) students had evidence of new dengue infections during one school term (5 months). There was no significant difference in proportions of students having incident dengue infections between the intervention and control schools, with adjustment for clustering by school. WHOPES cone tests showed a 100% knock down and mortality of Aedes aegypti mosquitoes exposed to impregnated clothing at baseline and up to 4 washes, but this efficacy rapidly declined to below 20% after 20 washes, corresponding to a weekly reduction in knock-down and mosquito mortality by 4.7% and 4.4% respectively. Results of the entomological assessments showed that the mean number of Aedes aegypti mosquitoes caught inside the classrooms of the intervention schools was significantly reduced in the month following the introduction of the impregnated uniforms, compared to those collected in classrooms of the control schools (p = 0.04).

CONCLUSIONS:

Entomological assessments showed that the intervention had some impact on the number of Aedes mosquitoes inside treatment schools immediately after impregnation and before insecticidal activity declined. However, there was no serological evidence of protection against dengue infections over the five months school term, best explained by the rapid washing-out of permethrin after 4 washes. If rapid washing-out of permethrin could be overcome by novel technological approaches, insecticide-treated clothes might become a potentially cost-effective and scalable intervention to protect against diseases transmitted by Aedes mosquitoes such as dengue, Zika, and chikungunya.

TRIAL REGISTRATION: ClinicalTrials.gov NCT01563640.

PMID: 28103255 PMCID: PMC5245776 DOI: 10.1371/journal.pntd.0005197

[Indexed for MEDLINE]

Keywords: Aedes Spp.; Mosquitoes; Flavivirus; Dengue; Zika virus; Chikungunya Fever; Arbovirus.

——

A #compendium of small #molecule direct-acting and host-targeting #inhibitors as #therapies against #alphaviruses (J Antimicrob Chemother., abstract)

[Source: Journal of Antimicrobial Chemotherapy, full page: (LINK). Abstract, edited.]

A compendium of small molecule direct-acting and host-targeting inhibitors as therapies against alphaviruses

Kuan-Chieh Ching, Lisa F. P. Ng, Christina L. L. Chai

J Antimicrob Chemother dkx224. DOI: https://doi.org/10.1093/jac/dkx224

Published: 21 July 2017

 

Abstract

Alphaviruses were amongst the first arboviruses to be isolated, characterized and assigned a taxonomic status. They are globally widespread, infecting a large variety of terrestrial animals, birds, insects and even fish. Moreover, they are capable of surviving and circulating in both sylvatic and urban environments, causing considerable human morbidity and mortality. The re-emergence of Chikungunya virus (CHIKV) in almost every part of the world has caused alarm to many health agencies throughout the world. The mosquito vector for this virus, Aedes, is globally distributed in tropical and temperate regions and capable of thriving in both rural and urban landscapes, giving the opportunity for CHIKV to continue expanding into new geographical regions. Despite the importance of alphaviruses as human pathogens, there is currently no targeted antiviral treatment available for alphavirus infection. This mini-review discusses some of the major features in the replication cycle of alphaviruses, highlighting the key viral targets and host components that participate in alphavirus replication and the molecular functions that were used in drug design. Together with describing the importance of these targets, we review the various direct-acting and host-targeting inhibitors, specifically small molecules that have been discovered and developed as potential therapeutics as well as their reported in vitro and in vivo efficacies.

Topic: alphavirus – antiviral agents – virus replication – viruses – pathogenic organism – small molecule – host (organism)

Issue Section: Review

© The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

Keywords: Arbovirus; Alphavirus; Aedes spp.; Antivirals.

——–