Recent #advances in the #detection of #respiratory virus #infection in #humans (J Med Virol., abstract)

[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]

J Med Virol. 2020 Jan 15. doi: 10.1002/jmv.25674. [Epub ahead of print]

Recent advances in the detection of respiratory virus infection in humans.

Zhang N1, Wang L2, Deng X3, Liang R3, Su M3, He C3, Hu L3, Su Y3, Ren J3, Yu F3, Du L4, Jiang S4,5.

Author information: 1 Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China. 2 State Key Laboratory of North China Crop Improvement and Regulation, Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China. 3 State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China. 4 Lindsley F. Kimball Research Institute, New York Blood Center, New York, USA. 5 Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.

 

Abstract

Respiratory tract viral infection caused by viruses or bacteria is one of the most common diseases in human worldwide, while those caused by emerging viruses, such as the novel coronavirus, 2019-nCoV that caused the pneumonia outbreak in Wuhan, China most recently, have posed great threats to global public health. Identification of the causative viral pathogens of respiratory tract viral infections is important to select an appropriate treatment, save people’s lives, stop the epidemics, and avoid unnecessary use of antibiotics. Conventional diagnostic tests, such as the assays for rapid detection of antiviral antibodies or viral antigens, are widely used in many clinical laboratories. With the development of modern technologies, new diagnostic strategies, including multiplex nucleic acid amplification and microarray-based assays, are emerging. This review summarizes currently available and novel emerging diagnostic methods for the detection of common respiratory viruses, such as influenza virus, human respiratory syncytial virus (RSV), coronavirus, human adenovirus (hAdV), and human rhinovirus (hRV). Multiplex assays for simultaneous detection of multiple respiratory viruses are also described. It is anticipated that such data will assist researchers and clinicians to develop appropriate diagnostic strategies for timely and effective detection of respiratory virus infections.

This article is protected by copyright. All rights reserved.

KEYWORDS: Respiratory viral infection; adenovirus; coronavirus; diagnostic methods; influenza virus; respiratory syncytial virus; rhinovirus

PMID: 31944312 DOI: 10.1002/jmv.25674

Keywords: Infectious Diseases; Diagnostic tests; 2019-nCoV.

——

Published by

Giuseppe Michieli

I am an Italian blogger, active since 2005 with main focus on emerging infectious diseases such as avian influenza, SARS, antibiotics resistance, and many other global Health issues. Other fields of interest are: climate change, global warming, geological and biological sciences. My activity consists mainly in collection and analysis of news, public services updates, confronting sources and making decision about what are the 'signals' of an impending crisis (an outbreak, for example). When a signal is detected, I follow traces during the entire course of an event. I started in 2005 my blog ''A TIME'S MEMORY'', now with more than 40,000 posts and 3 millions of web interactions. Subsequently I added an Italian Language blog, then discontinued because of very low traffic and interest. I contributed for seven years to a public forum (FluTrackers.com) in the midst of the Ebola epidemic in West Africa in 2014, I left the site to continue alone my data tracking job.