Searching for the Optimal #Treatment for Metallo- and Serine-β-Lactamase Producing #Enterobacteriaceae: #Aztreonam in Combination with #Ceftazidime-avibactam or #Meropenem-vaborbactam (AAC, abstract)

[Source: Antimicrobial Agents and Chemotherapy, full page: (LINK). Abstract, edited.]

Searching for the Optimal Treatment for Metallo- and Serine-β-Lactamase Producing Enterobacteriaceae: Aztreonam in Combination with Ceftazidime-avibactam or Meropenem-vaborbactam

M Biagi, T Wu, M Lee, S Patel, D Butler, E Wenzler

DOI: 10.1128/AAC.01426-19




Metallo-β-lactamase (MBL)-producing Enterobacteriaceae, particularly those that co-harbor serine β-lactamases, are a serious emerging public health threat given their rapid dissemination and the limited number of treatment options. Pre-clinical and anecdotal clinical data support the use of aztreonam in combination with ceftazidime-avibactam against these pathogens, but other aztreonam-based combinations have not been explored. The objective of this study was to evaluate the in vitro activity and compare synergy between aztreonam in combination with ceftazidime-avibactam and meropenem-vaborbactam against serine and MBL-producing Enterobacteriaceae via time-kill analyses.


8 clinical Enterobacteriaceae strains (4 Escherichia coli and 4 Klebsiella pneumoniae) co-producing NDM and at least one serine β-lactamase were used for all experiments. Drugs were tested alone, in dual β-lactam combinations, and in triple drug combinations against all strains.


All strains were resistant to ceftazidime-avibactam and meropenem-vaborbactam and 7/8 (87.5%) strains were resistant to aztreonam. Aztreonam combined with ceftazidime-avibactam was synergistic against all 7 aztreonam-resistant strains. Aztreonam combined with meropenem-vaborbactam was synergistic against all aztreonam-resistant strains with the exception of an OXA-232-producing K. pneumoniae strain. Neither triple combination was synergistic against the aztreonam-susceptible strain. Likewise, neither dual β-lactam combination was synergistic against any strain.


These data suggest that aztreonam plus meropenem-vaborbactam has similar activity to aztreonam plus ceftazidime-avibactam against Enterobacteriaceae producing NDM and other non-OXA-48-like serine β-lactamases. Confirmation of these findings in future in vitro and in vivo models is warranted.

Copyright © 2019 American Society for Microbiology. All Rights Reserved.

Keywords: Antibiotics; Drugs Resistance; Beta-lactams; NDM; Aztreonam; Meropenem; Vaborbactam; Ceftazidime; Avibactam; Enterobacteriaceae.


Published by

Giuseppe Michieli

I am an Italian blogger, active since 2005 with main focus on emerging infectious diseases such as avian influenza, SARS, antibiotics resistance, and many other global Health issues. Other fields of interest are: climate change, global warming, geological and biological sciences. My activity consists mainly in collection and analysis of news, public services updates, confronting sources and making decision about what are the 'signals' of an impending crisis (an outbreak, for example). When a signal is detected, I follow traces during the entire course of an event. I started in 2005 my blog ''A TIME'S MEMORY'', now with more than 40,000 posts and 3 millions of web interactions. Subsequently I added an Italian Language blog, then discontinued because of very low traffic and interest. I contributed for seven years to a public forum ( in the midst of the Ebola epidemic in West Africa in 2014, I left the site to continue alone my data tracking job.