#Zika Virus Non-Structural Protein 1 Disrupts Glycosaminoglycans and Causes #Permeability in Developing #Human #Placentas (J Infect Dis., abstract)

[Source: Journal of Infectious Diseases, full page: (LINK). Abstract, edited.]

Zika Virus Non-Structural Protein 1 Disrupts Glycosaminoglycans and Causes Permeability in Developing Human Placentas

Henry Puerta-Guardo, Takako Tabata, Matthew Petitt, Milena Dimitrova, Dustin R Glasner, Lenore Pereira, Eva Harris

The Journal of Infectious Diseases, jiz331, https://doi.org/10.1093/infdis/jiz331

Published: 27 June 2019




During pregnancy, the Zika flavivirus (ZIKV) infects human placentas, inducing defects in the developing fetus. The flavivirus nonstructural protein 1 (NS1) alters glycosaminoglycans on the endothelium, causing hyperpermeability in vitro and vascular leakage in vivo in a tissue-dependent manner. The contribution of ZIKV NS1 to placental dysfunction during ZIKV infection remains unknown.


We examined the effect of ZIKV NS1 on expression and release of heparan sulfate (HS), hyaluronic acid (HA), and sialic acid (Sia) on human trophoblast cell lines and anchoring villous explants from first-trimester placentas infected with ZIKV ex vivo. We measured changes in permeability in trophoblasts and stromal cores using a dextran-based fluorescence assay and changes in HA receptor expression using immunofluorescent microscopy.


ZIKV NS1 in the presence and absence of ZIKV increased the permeability of anchoring villous explants. ZIKV NS1 induced shedding of HA and HS and altered expression of CD44 and LYVE-1 HA receptors on stromal fibroblasts and Hofbauer macrophages in villous cores. Hyaluronidase was also stimulated in NS1-treated trophoblasts.


These findings suggest that ZIKV NS1 contributes to placental dysfunction via modulation of glycosaminoglycans on trophoblasts and chorionic villi, resulting in increased permeability of human placentas.

ZIKV NS1, chorionic villi, glycosaminoglycans, permeability, hyaluronic acid, heparan sulfate, hyaluronidase, CD44, LYVE-1, Hofbauer cells

Issue Section: Major Article

This content is only available as a PDF.

© The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Keywords: Flavivirus; Zika Virus; Pregnancy; Viral pathogenesis.


Published by

Giuseppe Michieli

I am an Italian blogger, active since 2005 with main focus on emerging infectious diseases such as avian influenza, SARS, antibiotics resistance, and many other global Health issues. Other fields of interest are: climate change, global warming, geological and biological sciences. My activity consists mainly in collection and analysis of news, public services updates, confronting sources and making decision about what are the 'signals' of an impending crisis (an outbreak, for example). When a signal is detected, I follow traces during the entire course of an event. I started in 2005 my blog ''A TIME'S MEMORY'', now with more than 40,000 posts and 3 millions of web interactions. Subsequently I added an Italian Language blog, then discontinued because of very low traffic and interest. I contributed for seven years to a public forum (FluTrackers.com) in the midst of the Ebola epidemic in West Africa in 2014, I left the site to continue alone my data tracking job.