Reduced #ceftazidime and #ertapenem susceptibility due to production of #OXA-2 in #Klebsiella pneumoniae ST258 (J Antimicrob Chemother., abstract)

[Source: Journal of Antimicrobial Chemotherapy, full page: (LINK). Abstract, edited.]

Reduced ceftazidime and ertapenem susceptibility due to production of OXA-2 in Klebsiella pneumoniaeST258

Alina Iovleva, Roberta T Mettus, Christi L McElheny, Mustapha M Mustapha, Daria Van Tyne, Ryan K Shields, A William Pasculle, Vaughn S Cooper, Yohei Doi

Journal of Antimicrobial Chemotherapy, dkz183, https://doi.org/10.1093/jac/dkz183

Published: 24 May 2019

 

Abstract

Background

OXA-2 is a class D β-lactamase that confers resistance to penicillins, as well as narrow-spectrum cephalosporins. OXA-2 was recently reported to also possess carbapenem-hydrolysing activity. Here, we describe a KPC-2-encoding Klebsiella pneumoniae isolate that demonstrated reduced susceptibility to ceftazidime and ertapenem due to production of OXA-2.

Objectives

To elucidate the role of OXA-2 production in reduced ceftazidime and ertapenem susceptibility in a K. pneumoniae ST258 clinical isolate.

Methods

MICs were determined by the agar dilution method. WGS was conducted to identify and compare resistance genes between isolates. Expression of KPC-2 was quantified by quantitative RT–PCR and immunoblotting. OXA-2 was expressed in Escherichia coli TOP10, as well as in K. pneumoniae ATCC 13883, to define the relative contribution of OXA-2 in β-lactam resistance. Kinetic studies were conducted using purified OXA-2 enzyme.

Results

K. pneumoniae 1761 belonged to ST258 and carried both blaKPC-2 and blaOXA-2. However, expression of blaKPC-2 was substantially reduced due to an IS1294insertion in the promoter region. K. pneumoniae 1761, K. pneumoniae ATCC 13883 and E. coli TOP10 carrying blaOXA-2-harbouring plasmids showed reduced susceptibility to ertapenem and ceftazidime, but meropenem, imipenem and cefepime were unaffected. blaOXA-2 was carried on a 2910 bp partial class 1 integron containing aacA4-blaOXA-2-qacEΔ1-sul1 on an IncA/C2plasmid, which was not present in the earlier ST258 isolates possessing blaKPC-2 with intact promoters. Hydrolysis of ertapenem by OXA-2 was confirmed using purified enzyme.

Conclusions

Production of OXA-2 was associated with reduced ceftazidime and ertapenem susceptibility in a K. pneumoniae ST258 isolate.

Issue Section: ORIGINAL RESEARCH

© The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Keywords: Antibiotics; Drugs Resistance; Beta-lactams; Carbapenem; Ceftazidime; Ertapenem; Meropenem; Imipenem; Cefepime.

——

Advertisements

Published by

gimi69

I am an Italian blogger, active since 2005 with main focus on emerging infectious diseases such as avian influenza, SARS, antibiotics resistance, and many other global Health issues. Other fields of interest are: climate change, global warming, geological and biological sciences. My activity consists mainly in collection and analysis of news, public services updates, confronting sources and making decision about what are the 'signals' of an impending crisis (an outbreak, for example). When a signal is detected, I follow traces during the entire course of an event. I started in 2005 my blog ''A TIME'S MEMORY'', now with more than 40,000 posts and 3 millions of web interactions. Subsequently I added an Italian Language blog, then discontinued because of very low traffic and interest. I contributed for seven years to a public forum (FluTrackers.com) in the midst of the Ebola epidemic in West Africa in 2014, I left the site to continue alone my data tracking job.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s