#Ceftazidime – #Avibactam in Combination With #Fosfomycin: A Novel #Therapeutic Strategy Against #MDR #Pseudomonas aeruginosa (J Infect Dis., abstract)

[Source: Journal of Infectious Diseases, full page: (LINK). Abstract, edited.]

Ceftazidime-Avibactam in Combination With Fosfomycin: A Novel Therapeutic Strategy Against Multidrug-Resistant Pseudomonas aeruginosa

Krisztina M Papp-Wallace, Elise T Zeiser, Scott A Becka, Steven Park, Brigid M Wilson, Marisa L Winkler, Roshan D’Souza, Indresh Singh, Granger Sutton, Derrick E Fouts, Liang Chen, Barry N Kreiswirth, Evelyn J Ellis-Grosse, George L Drusano, David S Perlin, Robert A Bonomo

The Journal of Infectious Diseases, jiz149, https://doi.org/10.1093/infdis/jiz149

Published: 17 May 2019



Previously, by targeting penicillin-binding protein 3, Pseudomonas-derived cephalosporinase (PDC), and MurA with ceftazidime-avibactam-fosfomycin, antimicrobial susceptibility was restored among multidrug-resistant (MDR) Pseudomonas aeruginosa. Herein, ceftazidime-avibactam-fosfomycin combination therapy against MDR P. aeruginosa clinical isolate CL232 was further evaluated. Checkerboard susceptibility analysis revealed synergy between ceftazidime-avibactam and fosfomycin. Accordingly, the resistance elements present and expressed in P. aeruginosa were analyzed using whole-genome sequencing and transcriptome profiling. Mutations in genes that are known to contribute to β-lactam resistance were identified. Moreover, expression of blaPDC, the mexAB-oprM efflux pump, and murA were upregulated. When fosfomycin was administered alone, the frequency of mutations conferring resistance was high; however, coadministration of fosfomycin with ceftazidime-avibactam yielded a lower frequency of resistance mutations. In a murine infection model using a high bacterial burden, ceftazidime-avibactam-fosfomycin significantly reduced the P. aeruginosa colony-forming units (CFUs), by approximately 2 and 5 logs, compared with stasis and in the vehicle-treated control, respectively. Administration of ceftazidime-avibactam and fosfomycin separately significantly increased CFUs, by approximately 3 logs and 1 log, respectively, compared with the number at stasis, and only reduced CFUs by approximately 1 log and 2 logs, respectively, compared with the number in the vehicle-treated control. Thus, the combination of ceftazidime-avibactam-fosfomycin was superior to either drug alone. By employing a “mechanism-based approach” to combination chemotherapy, we show that ceftazidime-avibactam-fosfomycin has the potential to offer infected patients with high bacterial burdens a therapeutic hope against infection with MDR P. aeruginosa that lack metallo-β-lactamases.

Pseudomonas aeruginosa, β-lactams, fosfomycin, combination therapy

Topic:  pseudomonas aeruginosa – ceftazidime – fosfomycin – lactams – infection – mice – avibactam – avibactam/ceftazidime

Issue Section: Major Article

Keywords: Antibiotics; Drugs Resistance; Pseudomonas aeruginosa; Avibactam; Ceftazidime; Fosfomycin.


Published by

Giuseppe Michieli

I am an Italian blogger, active since 2005 with main focus on emerging infectious diseases such as avian influenza, SARS, antibiotics resistance, and many other global Health issues. Other fields of interest are: climate change, global warming, geological and biological sciences. My activity consists mainly in collection and analysis of news, public services updates, confronting sources and making decision about what are the 'signals' of an impending crisis (an outbreak, for example). When a signal is detected, I follow traces during the entire course of an event. I started in 2005 my blog ''A TIME'S MEMORY'', now with more than 40,000 posts and 3 millions of web interactions. Subsequently I added an Italian Language blog, then discontinued because of very low traffic and interest. I contributed for seven years to a public forum (FluTrackers.com) in the midst of the Ebola epidemic in West Africa in 2014, I left the site to continue alone my data tracking job.