Intracellular activity of #antimicrobial compounds used for #Staphylococcus aureus #nasal #decolonization (J Antimicrob Chemother., abstract)

[Source: Journal of Antimicrobial Chemotherapy, full page: (LINK). Abstract, edited.]

Intracellular activity of antimicrobial compounds used for Staphylococcus aureus nasal decolonization

J Rigaill, M F Morgene, M Gavid, Y Lelonge, Z He, A Carricajo, F Grattard, B Pozzetto, P Berthelot, E Botelho-Nevers, P O Verhoeven

Journal of Antimicrobial Chemotherapy, dky318,

Published: 16 August 2018




Staphylococcus aureus is able to invade mammalian cells during infection and was recently observed inside nasal mucosa of healthy carriers.


To determine the intracellular activity of antimicrobial compounds used for decolonization procedures using a cell model mimicking S. aureus nasal epithelium invasion.

Patients and methods

HaCaT cells and human nasal epithelial cells (HNECs) recovered from nasal swabs of S. aureus carriers were visualized by confocal laser scanning microscopy to detect intracellular S. aureus cells. An HaCaT cell model, mimicking S. aureus internalization observed ex vivo in HNECs, was used to assess the intracellular activity against S. aureus of 21 antimicrobial compounds used for nasal decolonization, including mupirocin and chlorhexidine.


HaCaT cells and HNECs were found to internalize S. aureus with the same focal pattern. Most antimicrobial compounds tested on HaCaT cells were shown to have weak activity against intracellular S. aureus. Some systemic antimicrobials, including fusidic acid, clindamycin, linezolid, minocycline, ciprofloxacin, moxifloxacin, rifampicin and levofloxacin, reduced S. aureus intracellular loads by 0.43–1.66 log cfu/106 cells compared with the control (P < 0.001). By contrast, mupirocin and chlorhexidine reduced the S. aureus intracellular load by 0.19 and 0.23 log cfu/106 cells, respectively.


These data indicate that most of the antimicrobial compounds used for nasal decolonization, including mupirocin and chlorhexidine, exhibit weak activity against intracellular S. aureus using the HaCaT cell model. This work emphasizes the need to better understand the role of the S. aureus intracellular reservoir during nasal colonization in order to improve decolonization procedures.


© The Author(s) 2018. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email:

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (

Keywords: Antibiotics; Staphylococcus aureus; Mupirocin; Chlorhexidine.


Published by

Giuseppe Michieli

I am an Italian blogger, active since 2005 with main focus on emerging infectious diseases such as avian influenza, SARS, antibiotics resistance, and many other global Health issues. Other fields of interest are: climate change, global warming, geological and biological sciences. My activity consists mainly in collection and analysis of news, public services updates, confronting sources and making decision about what are the 'signals' of an impending crisis (an outbreak, for example). When a signal is detected, I follow traces during the entire course of an event. I started in 2005 my blog ''A TIME'S MEMORY'', now with more than 40,000 posts and 3 millions of web interactions. Subsequently I added an Italian Language blog, then discontinued because of very low traffic and interest. I contributed for seven years to a public forum ( in the midst of the Ebola epidemic in West Africa in 2014, I left the site to continue alone my data tracking job.